Lithium metal batteries are primary batteries that have metallic lithium as an anode. These types of batteries are also referred to as lithium-metal batteries after lithium-ion batteries had been invented. Most lithium metal batteries are non-rechargeable. However, rechargeable lithium metal batteries are also under development. Since 2007, Dangerous Goods Regulations differentiate between lithium metal batteries (UN 3090) and lithium-ion batteries (UN 3480).
They stand apart from other batteries in their high charge density and high cost per unit. Depending on the design and chemical compounds used, lithium cells can produce voltages from 1.5V (comparable to a zinc–carbon or alkaline battery) to about 3.7V.
Disposable primary lithium batteries must be distinguished from secondary lithium-ion or a lithium-polymer, which are rechargeable batteries and contain no metallic lithium. Lithium is especially useful, because its ions can be arranged to move between the anode and the cathode, using an intercalated lithium compound as the cathode material but without using lithium metal as the anode material. Pure lithium will instantly react with water, or even moisture in the air; the lithium in lithium-ion batteries is a less reactive compound.
Lithium batteries are widely used in portable consumer electronic devices. The term "lithium battery" refers to a family of different lithium-metal chemistries, comprising many types of cathodes and electrolytes but all with metallic lithium as the anode. The battery requires from 0.15 to 0.3 kg of lithium per kWh. As designed these primary systems use a charged cathode, that being an electro-active material with crystallographic vacancies that are filled gradually during discharge.
The most common type of lithium cell used in consumer applications uses metallic lithium as the anode and manganese dioxide as the cathode, with a salt of lithium dissolved in an organic solvent as the electrolyte.
University of California San Diego have developed an electrolyte chemistry that allows lithium batteries to run at temperatures as low as -60 °C.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In physics, energy density is the amount of energy stored in a given system or region of space per unit volume. It is sometimes confused with energy per unit mass which is properly called specific energy or . Often only the useful or extractable energy is measured, which is to say that inaccessible energy (such as rest mass energy) is ignored. In cosmological and other general relativistic contexts, however, the energy densities considered are those that correspond to the elements of the stress-energy tensor and therefore do include mass energy as well as energy densities associated with pressure.
A lithium-ion or Li-ion battery is a type of rechargeable battery which uses the reversible reduction of lithium ions to store energy. The negative electrode of a conventional lithium-ion cell is typically graphite, a form of carbon. This negative electrode is sometimes called the anode as it acts as an anode during discharge. The positive electrode is typically a metal oxide; the positive electrode is sometimes called the cathode as it acts as a cathode during discharge.
This course examines the supply of energy from various angles: available resources, how they can be combined or substituted, their private and social costs, whether they can meet the demand, and how t
You will learn about the bonding and structure of several important families of solid state materials. You will gain insight into common synthetic and characterization methods and learn about the appl
Explores the significance of SMES systems, superconductivity, and lithium-ion batteries, highlighting their roles in energy storage and global sustainability.
Battery health prediction is significant while challenging for intelligent battery management. This article proposes a general framework for both short-term and long-term predictions of battery health under unseen dynamic loading and temperature conditions ...
Advanced battery electrodes require a cautious design of microscale particles with built-in nanoscale features to exploit the advantages of both micro- and nano-particles relative to their performance attributes. Herein, the dynamic behavior of nanosized S ...
Although Al-air batteries are expected to be the candidates for energy conversion systems in renewable energy market due to the higher energy density, richer reserves, and lighter mass of Al metal, the anode self-discharge is seen as a notorious issue that ...