In fluid dynamics, a cnoidal wave is a nonlinear and exact periodic wave solution of the Korteweg–de Vries equation. These solutions are in terms of the Jacobi elliptic function cn, which is why they are coined cnoidal waves. They are used to describe surface gravity waves of fairly long wavelength, as compared to the water depth.
The cnoidal wave solutions were derived by Korteweg and de Vries, in their 1895 paper in which they also propose their dispersive long-wave equation, now known as the Korteweg–de Vries equation. In the limit of infinite wavelength, the cnoidal wave becomes a solitary wave.
The Benjamin–Bona–Mahony equation has improved short-wavelength behaviour, as compared to the Korteweg–de Vries equation, and is another uni-directional wave equation with cnoidal wave solutions. Further, since the Korteweg–de Vries equation is an approximation to the Boussinesq equations for the case of one-way wave propagation, cnoidal waves are approximate solutions to the Boussinesq equations.
Cnoidal wave solutions can appear in other applications than surface gravity waves as well, for instance to describe ion acoustic waves in plasma physics.
The Korteweg–de Vries equation (KdV equation) can be used to describe the uni-directional propagation of weakly nonlinear and long waves—where long wave means: having long wavelengths as compared with the mean water depth—of surface gravity waves on a fluid layer. The KdV equation is a dispersive wave equation, including both frequency dispersion and amplitude dispersion effects. In its classical use, the KdV equation is applicable for wavelengths λ in excess of about five times the average water depth h, so for λ > 5 h; and for the period τ greater than with g the strength of the gravitational acceleration. To envisage the position of the KdV equation within the scope of classical wave approximations, it distinguishes itself in the following ways:
Korteweg–de Vries equation — describes the forward propagation of weakly nonlinear and dispersive waves, for long waves with λ > 7 h.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course is an introduction to symmetry analysis in fluid mechanics. The student will learn how to find similarity and travelling-wave solutions to partial differential equations used in fluid and c
Basic principles of optics
This course will give an introduction to some aspects of nonlinear dispersive partial differential equations. These are time evolution problems that arise in many contexts in physics, such as quantum
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
In fluid dynamics, dispersion of water waves generally refers to frequency dispersion, which means that waves of different wavelengths travel at different phase speeds. Water waves, in this context, are waves propagating on the water surface, with gravity and surface tension as the restoring forces. As a result, water with a free surface is generally considered to be a dispersive medium. For a certain water depth, surface gravity waves – i.e.
In fluid dynamics, Airy wave theory (often referred to as linear wave theory) gives a linearised description of the propagation of gravity waves on the surface of a homogeneous fluid layer. The theory assumes that the fluid layer has a uniform mean depth, and that the fluid flow is inviscid, incompressible and irrotational. This theory was first published, in correct form, by George Biddell Airy in the 19th century.
In fluid dynamics, a trochoidal wave or Gerstner wave is an exact solution of the Euler equations for periodic surface gravity waves. It describes a progressive wave of permanent form on the surface of an incompressible fluid of infinite depth. The free surface of this wave solution is an inverted (upside-down) trochoid – with sharper crests and flat troughs. This wave solution was discovered by Gerstner in 1802, and rediscovered independently by Rankine in 1863.
The concept of soliton gas was introduced in 1971 by Zakharov as an infinite collection of weakly interacting solitons in the framework of Korteweg-de Vries (KdV) equation. In this theoretical construction of a diluted (rarefied) soliton gas, solitons with ...
We investigate the response of the free liquid surface in a partially filled circular cylindrical container undergoing a planar elliptic and time-periodic orbit while maintaining fixed its orientation. For small forcing amplitudes and deep liquid layers, w ...
We investigate the long-time properties of the two-dimensional inviscid Boussinesq equations near a stably stratified Couette flow, for an initial Gevrey perturbation of size & epsilon;. Under the classical Miles-Howard stability condition on the Richardso ...