Concept

Houle trochoïdale

Résumé
vignette|Profil de houle trochoïdale (en bleu foncé) se propageant vers la droite. Les particules de la surface libre décrivent des cercles (en cyan), et l'hodographe des particules (en noir) est la ligne rouge. La hauteur des vagues est notée , la longueur d'onde et la vitesse de phase . En dynamique des fluides, la houle trochoïdale est une solution exacte des équations d'Euler. Découverte en 1802 par le baron von Gerstner, elle décrit les ondes de gravité de forme périodique qui se propagent à la surface d'un fluide incompressible de profondeur infinie, en régime permanent. La surface libre de l'écoulement est une cycloïde (ou trochoïde, pour reprendre le terme de Gerstner). C’est un exemple classique d'écoulement tourbillonnaire, et d'utilisation des coordonnées lagrangiennes. Le tourbillon est l’enveloppe des trajectoires des particules de fluide, qui ici sont des cercles dont le rayon varie avec la profondeur. Cette hypothèse n’est pas conforme aux observations expérimentales qui se manifestent par la dérive de Stokes. D’autre part, la vitesse de phase est, dans ce modèle, indépendante de l’amplitude de la houle, anomalie qui a motivé l'étude théorique d'ondes non-linéaires ensuite (telles l’onde de Stokes et l’onde cnoïdale). Pour ces raisons (et nonobstant le fait que ce modèle simple ne peut être adapté à un écoulement en profondeur finie), la houle trochoïdale ne présente plus aujourd’hui qu'un intérêt théorique et didactique. Elle est cependant encore utilisée en infographie pour le rendu réaliste de vagues. Le champ est étendu à deux dimensions, en utilisant fréquemment un algorithme de transformée de Fourier rapide pour l’animation (temps réel). On recherche un écoulement permanent et périodique dans l’espace, et l’on utilise une description lagrangienne.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.