In the area of abstract algebra known as ring theory, a left perfect ring is a type of ring in which all left modules have projective covers. The right case is defined by analogy, and the condition is not left-right symmetric; that is, there exist rings which are perfect on one side but not the other. Perfect rings were introduced in Bass's book.
A semiperfect ring is a ring over which every finitely generated left module has a projective cover. This property is left-right symmetric.
The following equivalent definitions of a left perfect ring R are found in Aderson and Fuller:
Every left R module has a projective cover.
R/J(R) is semisimple and J(R) is left T-nilpotent (that is, for every infinite sequence of elements of J(R) there is an n such that the product of first n terms are zero), where J(R) is the Jacobson radical of R.
(Bass' Theorem P) R satisfies the descending chain condition on principal right ideals. (There is no mistake; this condition on right principal ideals is equivalent to the ring being left perfect.)
Every flat left R-module is projective.
R/J(R) is semisimple and every non-zero left R module contains a maximal submodule.
R contains no infinite orthogonal set of idempotents, and every non-zero right R module contains a minimal submodule.
Right or left Artinian rings, and semiprimary rings are known to be right-and-left perfect.
The following is an example (due to Bass) of a local ring which is right but not left perfect. Let F be a field, and consider a certain ring of infinite matrices over F.
Take the set of infinite matrices with entries indexed by × , and which have only finitely many nonzero entries, all of them above the diagonal, and denote this set by . Also take the matrix with all 1's on the diagonal, and form the set
It can be shown that R is a ring with identity, whose Jacobson radical is J. Furthermore R/J is a field, so that R is local, and R is right but not left perfect.
For a left perfect ring R:
From the equivalences above, every left R module has a maximal submodule and a projective cover, and the flat left R modules coincide with the projective left modules.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ring theory is the branch of mathematics in which rings are studied: that is, structures supporting both an addition and a multiplication operation. This is a glossary of some terms of the subject. For the items in commutative algebra (the theory of commutative rings), see glossary of commutative algebra. For ring-theoretic concepts in the language of modules, see also Glossary of module theory. For specific types of algebras, see also: Glossary of field theory and Glossary of Lie groups and Lie algebras.
In abstract algebra, Morita equivalence is a relationship defined between rings that preserves many ring-theoretic properties. More precisely two rings like R, S are Morita equivalent (denoted by ) if their are equivalent (denoted by ). It is named after Japanese mathematician Kiiti Morita who defined equivalence and a similar notion of duality in 1958. Rings are commonly studied in terms of their modules, as modules can be viewed as representations of rings.
In mathematics, especially in the area of abstract algebra known as module theory, an injective module is a module Q that shares certain desirable properties with the Z-module Q of all rational numbers. Specifically, if Q is a submodule of some other module, then it is already a direct summand of that module; also, given a submodule of a module Y, any module homomorphism from this submodule to Q can be extended to a homomorphism from all of Y to Q. This concept is to that of projective modules.
We construct examples of finitely generated infinite simple groups of homeomorphisms of the real line. Equivalently, these are examples of finitely generated simple left (or right) orderable groups. This answers a well known open question of Rhemtulla from ...
Let A be a d-dimensional smooth algebra over a perfect field of characteristic not 2. Let Um(n+1)(A)/En+1 (A) be the set of unimodular rows of length n + 1 up to elementary transformations. If n >= (d + 2)/2, it carries a natural structure of group as disc ...