In the area of abstract algebra known as ring theory, a left perfect ring is a type of ring in which all left modules have projective covers. The right case is defined by analogy, and the condition is not left-right symmetric; that is, there exist rings which are perfect on one side but not the other. Perfect rings were introduced in Bass's book.
A semiperfect ring is a ring over which every finitely generated left module has a projective cover. This property is left-right symmetric.
The following equivalent definitions of a left perfect ring R are found in Aderson and Fuller:
Every left R module has a projective cover.
R/J(R) is semisimple and J(R) is left T-nilpotent (that is, for every infinite sequence of elements of J(R) there is an n such that the product of first n terms are zero), where J(R) is the Jacobson radical of R.
(Bass' Theorem P) R satisfies the descending chain condition on principal right ideals. (There is no mistake; this condition on right principal ideals is equivalent to the ring being left perfect.)
Every flat left R-module is projective.
R/J(R) is semisimple and every non-zero left R module contains a maximal submodule.
R contains no infinite orthogonal set of idempotents, and every non-zero right R module contains a minimal submodule.
Right or left Artinian rings, and semiprimary rings are known to be right-and-left perfect.
The following is an example (due to Bass) of a local ring which is right but not left perfect. Let F be a field, and consider a certain ring of infinite matrices over F.
Take the set of infinite matrices with entries indexed by × , and which have only finitely many nonzero entries, all of them above the diagonal, and denote this set by . Also take the matrix with all 1's on the diagonal, and form the set
It can be shown that R is a ring with identity, whose Jacobson radical is J. Furthermore R/J is a field, so that R is local, and R is right but not left perfect.
For a left perfect ring R:
From the equivalences above, every left R module has a maximal submodule and a projective cover, and the flat left R modules coincide with the projective left modules.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Ring theory is the branch of mathematics in which rings are studied: that is, structures supporting both an addition and a multiplication operation. This is a glossary of some terms of the subject. For the items in commutative algebra (the theory of commutative rings), see glossary of commutative algebra. For ring-theoretic concepts in the language of modules, see also Glossary of module theory. For specific types of algebras, see also: Glossary of field theory and Glossary of Lie groups and Lie algebras.
En algèbre, et plus précisément en théorie des anneaux, l'équivalence de Morita est une relation entre anneaux. Elle est nommée d'après le mathématicien japonais Kiiti Morita qui l'a introduite dans un article de 1958. L'étude d'un anneau consiste souvent à explorer la catégorie des modules sur cet anneau. Deux anneaux sont en équivalence de Morita précisément lorsque leurs catégories de modules sont équivalentes. L'équivalence de Morita présente surtout un intérêt dans l'étude des anneaux non commutatifs.
En mathématiques, et plus spécifiquement en algèbre homologique, un module injectif est un module Q (à gauche par exemple) sur un anneau A tel que pour tout morphisme injectif f : X → Y entre deux A-modules (à gauche) et pour tout morphisme g : X → Q, il existe un morphisme h : Y → Q tel que hf = g, c'est-à-dire tel que le diagramme suivant commute : center Autrement dit : Q est injectif si pour tout module Y, tout morphisme d'un sous-module de Y vers Q s'étend à Y.
Let A be a d-dimensional smooth algebra over a perfect field of characteristic not 2. Let Um(n+1)(A)/En+1 (A) be the set of unimodular rows of length n + 1 up to elementary transformations. If n >= (d + 2)/2, it carries a natural structure of group as disc ...
2011
We construct examples of finitely generated infinite simple groups of homeomorphisms of the real line. Equivalently, these are examples of finitely generated simple left (or right) orderable groups. This answers a well known open question of Rhemtulla from ...