A blazar is an active galactic nucleus (AGN) with a relativistic jet (a jet composed of ionized matter traveling at nearly the speed of light) directed very nearly towards an observer. Relativistic beaming of electromagnetic radiation from the jet makes blazars appear much brighter than they would be if the jet were pointed in a direction away from Earth. Blazars are powerful sources of emission across the electromagnetic spectrum and are observed to be sources of high-energy gamma ray photons. Blazars are highly variable sources, often undergoing rapid and dramatic fluctuations in brightness on short timescales (hours to days). Some blazar jets appear to exhibit superluminal motion, another consequence of material in the jet traveling toward the observer at nearly the speed of light.
The blazar category includes BL Lac objects and optically violently variable (OVV) quasars. The generally accepted theory is that BL Lac objects are intrinsically low-power radio galaxies while OVV quasars are intrinsically powerful radio-loud quasars. The name "blazar" was coined in 1978 by astronomer Edward Spiegel to denote the combination of these two classes.
In visible-wavelength images, most blazars appear compact and pointlike, but high-resolution images reveal that they are located at the centers of elliptical galaxies.
Blazars are important topics of research in astronomy and high-energy astrophysics. Blazar research includes investigation of the properties of accretion disks and jets, the central supermassive black holes and surrounding host galaxies, and the emission of high-energy photons, cosmic rays, and neutrinos.
In July 2018, the IceCube Neutrino Observatory team traced a neutrino that hit its Antarctica-based detector in September 2017 to its point of origin in a blazar 3.7 billion light-years away. This was the first time that a neutrino detector was used to locate an object in space.
Blazars, like all active galactic nuclei (AGN), are thought to be powered by material falling into a supermassive black hole in the core of the host galaxy.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course will cover some fundamentals of magnetohydrodynamics (MHD) theory with hands-on sessions to learn the basics of MHD simulations using the open-source Pencil Code (http://pencil-code.nordita
Introduction to time-variable astrophysical objects and processes, from Space Weather to stars, black holes, and galaxies. Introduction to time-series analysis, instrumentation targeting variability,
Neutrino astronomy is the branch of astronomy that observes astronomical objects with neutrino detectors in special observatories. Neutrinos are created as a result of certain types of radioactive decay, nuclear reactions such as those that take place in the Sun or high energy astrophysical phenomena, in nuclear reactors, or when cosmic rays hit atoms in the atmosphere. Neutrinos rarely interact with matter, meaning that it is unlikely for them to scatter along their trajectory, unlike photons.
Relativistic beaming (also known as Doppler beaming, Doppler boosting, or the headlight effect) is the process by which relativistic effects modify the apparent luminosity of emitting matter that is moving at speeds close to the speed of light. In an astronomical context, relativistic beaming commonly occurs in two oppositely-directed relativistic jets of plasma that originate from a central compact object that is accreting matter.
A gamma ray, also known as gamma radiation (symbol γ or ), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically shorter than those of X-rays. With frequencies above 30 exahertz (3e19Hz), it imparts the highest photon energy. Paul Villard, a French chemist and physicist, discovered gamma radiation in 1900 while studying radiation emitted by radium.
Explores multimessenger astrophysics, focusing on cosmic rays, neutrinos, and gamma rays, and discusses the detection of neutrinos from a BL Lac object.
Explores the classification and statistics of AGN, black holes, unified AGN model, variability, megamasers, orbital motion measurement, and time-delay cosmography.
IceCube Collaboration has previously reported evidence for a neutrino signal from a Seyfert galaxy NGC 1068. This may suggest that all Seyfert galaxies emit neutrinos. To test this hypothesis, we identify the best candidate neutrino sources among nearby Se ...
Mid-infrared (mid-IR) observations are powerful in identifying heavily obscured active galactic nuclei (AGN) that have weak emission in other wavelengths. Data from the Mid-Infrared Instrument (MIRI) on board the James Webb Space Telescope provides an exce ...
We report the identification of 64 new candidates of compact galaxies, potentially hosting faint quasars with bolometric luminosities of L-bol = 10(43)-10(46) erg s(-1), residing in the reionization epoch within the redshift range of 6 less than or similar ...