Neutrino astronomy is the branch of astronomy that observes astronomical objects with neutrino detectors in special observatories. Neutrinos are created as a result of certain types of radioactive decay, nuclear reactions such as those that take place in the Sun or high energy astrophysical phenomena, in nuclear reactors, or when cosmic rays hit atoms in the atmosphere. Neutrinos rarely interact with matter, meaning that it is unlikely for them to scatter along their trajectory, unlike photons. Therefore, neutrinos offer a unique opportunity to observe processes that are inaccessible to optical telescopes, such as reactions in the Sun's core. Neutrinos can also offer a very strong pointing direction compared to charged particle cosmic rays.
Since neutrinos interact weakly, neutrino detectors must have large target masses (often thousands of tons). The detectors also must use shielding and effective software to remove background signal.
Neutrinos were first recorded in 1956 by Clyde Cowan and Frederick Reines in an experiment employing a nearby nuclear reactor as a neutrino source. Their discovery was acknowledged with a Nobel Prize for physics in 1995.
This was followed by the first atmospheric neutrino detection in 1965 by two groups almost simultaneously. One was led by Frederick Reines who operated a liquid scintillator - the Case-Witwatersrand-Irvine or CWI detector - in the East Rand gold mine in South Africa at an 8.8 km water depth equivalent. The other was a Bombay-Osaka-Durham collaboration that operated in the Indian Kolar Gold Field mine at an equivalent water depth of 7.5 km. Although the KGF group detected neutrino candidates two months later than Reines CWI, they were given formal priority due to publishing their findings two weeks earlier.
In 1968, Raymond Davis, Jr. and John N. Bahcall successfully detected the first solar neutrinos in the Homestake experiment.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course presents the physical principles and the recent research developments on three topics of particle and nuclear physics: the physics of neutrinos, dark matter, and plasmas of quarks and gluo
We present the role of particle physics in cosmology and in the description of astrophysical phenomena. We also present the methods and technologies for the observation of cosmic particles.
Presentation of the electroweak and strong interaction theories that constitute the Standard Model of particle physics. The course also discusses the new theories proposed to solve the problems of the
A blazar is an active galactic nucleus (AGN) with a relativistic jet (a jet composed of ionized matter traveling at nearly the speed of light) directed very nearly towards an observer. Relativistic beaming of electromagnetic radiation from the jet makes blazars appear much brighter than they would be if the jet were pointed in a direction away from Earth. Blazars are powerful sources of emission across the electromagnetic spectrum and are observed to be sources of high-energy gamma ray photons.
Astrophysics is a science that employs the methods and principles of physics and chemistry in the study of astronomical objects and phenomena. As one of the founders of the discipline, James Keeler, said, Astrophysics "seeks to ascertain the nature of the heavenly bodies, rather than their positions or motions in space–what they are, rather than where they are." Among the subjects studied are the Sun (solar physics), other stars, galaxies, extrasolar planets, the interstellar medium and the cosmic microwave background.
An active galactic nucleus (AGN) is a compact region at the center of a galaxy that has a much-higher-than-normal luminosity over at least some portion of the electromagnetic spectrum with characteristics indicating that the luminosity is not produced by stars. Such excess, non-stellar emissions have been observed in the radio, microwave, infrared, optical, ultra-violet, X-ray and gamma ray wavebands. A galaxy hosting an AGN is called an active galaxy.
Explores solar neutrino detection, energy spectra, cosmic neutrinos, atmospheric neutrinos, and high-energy astroparticles.
Explores multimessenger astrophysics, focusing on cosmic rays, neutrinos, and gamma rays, and discusses the detection of neutrinos from a BL Lac object.
IceCube Collaboration has previously reported evidence for a neutrino signal from a Seyfert galaxy NGC 1068. This may suggest that all Seyfert galaxies emit neutrinos. To test this hypothesis, we identify the best candidate neutrino sources among nearby Se ...
Amer Physical Soc2024
, , , ,
Scintillating fibre detectors combine sub-mm resolution particle tracking, precise measurements of the particle stopping power and sub-ns time resolution. Typically, fibres are read out with silicon photomultipliers (SiPM). Hence, if fibres with a few hund ...
New York2024
Particle accelerators are the drivers for large-scale research infrastructures for particle physics but also for many branches of condensed matter research. The types of accelerator-driven research infrastructures include particle colliders, neutron, muon ...