Summary
Powder diffraction is a scientific technique using X-ray, neutron, or electron diffraction on powder or microcrystalline samples for structural characterization of materials. An instrument dedicated to performing such powder measurements is called a powder diffractometer. Powder diffraction stands in contrast to single crystal diffraction techniques, which work best with a single, well-ordered crystal. Diffraction grating The most common type of powder diffraction is with x-rays, the focus of this article although some aspects of neutron powder diffraction are mentioned. (Powder electron diffraction is more complex due to dynamical diffraction and is not discussed further herein.) Typical diffractometers use electromagnetic radiation (waves) with known wavelength and frequency, which is determined by their source. The source is often x-rays, and neutrons are also common sources, with their frequency determined by their de Broglie wavelength. When these waves reach the sample, the incoming beam is either reflected off the surface, or can enter the lattice and be diffracted by the atoms present in the sample. If the atoms are arranged symmetrically with a separation distance d, these waves will interfere constructively only where the path-length difference 2d sin θ is equal to an integer multiple of the wavelength, producing a diffraction maximum in accordance with Bragg's law. These waves interfere destructively at points between the intersections where the waves are out of phase, and do not lead to bright spots in the diffraction pattern. Because the sample itself is acting as the diffraction grating, this spacing is the [atomic spacing]. The distinction between powder and single crystal diffraction is the degree of texturing in the sample. Single crystals have maximal texturing, and are said to be anisotropic. In contrast, in powder diffraction, every possible crystalline orientation is represented equally in a powdered sample, the isotropic case. Powder X-ray diffraction (PXRD) operates under the assumption that the sample is randomly arranged.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood