Concept

Crystallographic database

Summary
A crystallographic database is a database specifically designed to store information about the structure of molecules and crystals. Crystals are solids having, in all three dimensions of space, a regularly repeating arrangement of atoms, ions, or molecules. They are characterized by symmetry, morphology, and directionally dependent physical properties. A crystal structure describes the arrangement of atoms, ions, or molecules in a crystal. (Molecules need to crystallize into solids so that their regularly repeating arrangements can be taken advantage of in X-ray, neutron, and electron diffraction based crystallography.) Crystal structures of crystalline material are typically determined from X-ray or neutron single-crystal diffraction data and stored in crystal structure databases. They are routinely identified by comparing reflection intensities and lattice spacings from X-ray powder diffraction data with entries in powder-diffraction fingerprinting databases. Crystal structures of nanometer sized crystalline samples can be determined via structure factor amplitude information from single-crystal electron diffraction data or structure factor amplitude and phase angle information from Fourier transforms of HRTEM images of crystallites. They are stored in crystal structure databases specializing in nanocrystals and can be identified by comparing zone axis subsets in lattice-fringe fingerprint plots with entries in a lattice-fringe fingerprinting database. Crystallographic databases differ in access and usage rights and offer varying degrees of search and analysis capacity. Many provide structure visualization capabilities. They can be browser based or installed locally. Newer versions are built on the relational database model and support the () as a universal data exchange format. Crystallographic data are primarily extracted from published scientific articles and supplementary material. Newer versions of crystallographic databases are built on the relational database model, which enables efficient cross-referencing of tables.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood