Concept

Komatiite

Komatiite (koʊˈmɑːtiˌaɪt) is a type of ultramafic mantle-derived volcanic rock defined as having crystallised from a lava of at least 18 wt% magnesium oxide (MgO). It is classified as a 'picritic rock'. Komatiites have low silicon, potassium and aluminium, and high to extremely high magnesium content. Komatiite was named for its type locality along the Komati River in South Africa, and frequently displays spinifex texture composed of large dendritic plates of olivine and pyroxene. Komatiites are rare rocks; almost all komatiites were formed during the Archaean Eon (4.0–2.5 billion years ago), with few younger (Proterozoic or Phanerozoic) examples known. This restriction in age is thought to be due to cooling of the mantle, which may have been hotter during the Archaean. The early Earth had much higher heat production, due to the residual heat from planetary accretion, as well as the greater abundance of radioactive isotopes, particularly shorter lived ones like uranium 235 which produce more decay heat. Lower temperature mantle melts such as basalt and picrite have essentially replaced komatiites as an eruptive lava on the Earth's surface. Geographically, komatiites are predominantly restricted in distribution to the Archaean shield areas, and occur with other ultramafic and high-magnesian mafic volcanic rocks in Archaean greenstone belts. The youngest komatiites are from the island of Gorgona on the Caribbean oceanic plateau off the Pacific coast of Colombia, and a rare example of Proterozoic komatiite is found in the Winnipegosis komatiite belt in Manitoba, Canada. Magmas of komatiitic compositions have a very high melting point, with calculated eruption temperatures up to, and possibly in excess of 1600 °C. Basaltic lavas normally have eruption temperatures of about 1100 to 1250 °C. The higher melting temperatures required to produce komatiite have been attributed to the presumed higher geothermal gradients in the Archaean Earth. Komatiitic lava was extremely fluid when it erupted (possessing the viscosity close to that of water but with the density of rock).

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related lectures (7)
Energy Storage Technologies: SMES, Superconductivity, and Lithium-Ion Batteries
Explores the significance of SMES systems, superconductivity, and lithium-ion batteries, highlighting their roles in energy storage and global sustainability.
Raw Materials and Powder Synthesis
Explores ceramics, glasses, metals, and polymers properties, raw materials importance, and market trends in ceramic products.
Show more
Related publications (48)

On the necessity of including vapor kinetics to model the specific surface area evolution in snow

Michael Lehning, Henning Löwe

Vapor fluxes in snow are often inferred from the temperature field by assuming vapor concentrations in local thermodynamic equilibrium with the temperature. Here we give evidence that, at the pore scale, this picture is in clear contradiction with the obse ...
2021

Weekly to monthly time scale of melt inclusion entrapment prior to eruption recorded by phosphorus distribution in olivine from mid-ocean ridges

Anders Meibom, Stéphane Laurent Escrig, Othmar Müntener, Lukas Baumgartner, Mélina Manzini

Melt inclusions (MIs) hosted in euhedral olivine have been proposed to represent droplets of primary melt, protected from processes occurring near Earth's surface during eruption. The complex zoning of phosphorus (P) in some olivines and the presence of a ...
Geological Soc Amer, Inc2017

From rock to magma and back again: The evolution of temperature and deformation mechanism in conduit margin zones

Marie Estelle Solange Violay, Michael Heap

Explosive silicic volcanism is driven by gas overpressure in systems that are inefficient at outgassing. The zone at the margin of a volcanic conduit-thought to play an important role in the outgassing of magma and therefore pore pressure changes and explo ...
Elsevier2017
Show more
Related concepts (22)
Metasomatism
Metasomatism (from the Greek μετά metá "change" and σῶμα sôma "body") is the chemical alteration of a rock by hydrothermal and other fluids. It is the replacement of one rock by another of different mineralogical and chemical composition. The minerals which compose the rocks are dissolved and new mineral formations are deposited in their place. Dissolution and deposition occur simultaneously and the rock remains solid. Synonyms of the word metasomatism are metasomatosis and metasomatic process.
Igneous rock
Igneous rock (igneous ), or magmatic rock, is one of the three main rock types, the others being sedimentary and metamorphic. Igneous rocks are formed through the cooling and solidification of magma or lava. The magma can be derived from partial melts of existing rocks in either a planet's mantle or crust. Typically, the melting is caused by one or more of three processes: an increase in temperature, a decrease in pressure, or a change in composition. Solidification into rock occurs either below the surface as intrusive rocks or on the surface as extrusive rocks.
Phlogopite
Phlogopite is a yellow, greenish, or reddish-brown member of the mica family of phyllosilicates. It is also known as magnesium mica. Phlogopite is the magnesium endmember of the biotite solid solution series, with the chemical formula KMg3AlSi3O10(F,OH)2. Iron substitutes for magnesium in variable amounts leading to the more common biotite with higher iron content. For physical and optical identification, it has most of the characteristic properties of biotite. Phlogopite is an important and relatively common end-member composition of biotite.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.