In geometry, a spherical wedge or ungula is a portion of a ball bounded by two plane semidisks and a spherical lune (termed the wedge's base). The angle between the radii lying within the bounding semidisks is the dihedral α. If AB is a semidisk that forms a ball when completely revolved about the z-axis, revolving AB only through a given α produces a spherical wedge of the same angle α. Beman (2008) remarks that "a spherical wedge is to the sphere of which it is a part as the angle of the wedge is to a perigon." A spherical wedge of α = pi radians (180°) is called a hemisphere, while a spherical wedge of α = 2pi radians (360°) constitutes a complete ball.
The volume of a spherical wedge can be intuitively related to the AB definition in that while the volume of a ball of radius r is given by 4/3pir^3, the volume a spherical wedge of the same radius r is given by
Extrapolating the same principle and considering that the surface area of a sphere is given by 4pir^2, it can be seen that the surface area of the lune corresponding to the same wedge is given by
Hart (2009) states that the "volume of a spherical wedge is to the volume of the sphere as the number of degrees in the [angle of the wedge] is to 360". Hence, and through derivation of the spherical wedge volume formula, it can be concluded that, if V_s is the volume of the sphere and V_w is the volume of a given spherical wedge,
Also, if S_l is the area of a given wedge's lune, and S_s is the area of the wedge's sphere,
A. A distinction is sometimes drawn between the terms "sphere" and "ball", where a sphere is regarded as being merely the outer surface of a solid ball. It is common to use the terms interchangeably, as the commentaries of both Beman (2008) and Hart (2008) do.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In geometry, a spherical segment is the solid defined by cutting a sphere or a ball with a pair of parallel planes. It can be thought of as a spherical cap with the top truncated, and so it corresponds to a spherical frustum. The surface of the spherical segment (excluding the bases) is called spherical zone. If the radius of the sphere is called R, the radii of the spherical segment bases are r_1 and r_2, and the height of the segment (the distance from one parallel plane to the other) called h, then the
In geometry, a spherical sector, also known as a spherical cone, is a portion of a sphere or of a ball defined by a conical boundary with apex at the center of the sphere. It can be described as the union of a spherical cap and the cone formed by the center of the sphere and the base of the cap. It is the three-dimensional analogue of the sector of a circle. If the radius of the sphere is denoted by r and the height of the cap by h, the volume of the spherical sector is This may also be written as where φ is half the cone angle, i.
In geometry, a spherical cap or spherical dome is a portion of a sphere or of a ball cut off by a plane. It is also a spherical segment of one base, i.e., bounded by a single plane. If the plane passes through the center of the sphere (forming a great circle), so that the height of the cap is equal to the radius of the sphere, the spherical cap is called a hemisphere.
In the fields of microgripping and microassembly, the self-alignment motion of a solid micro-object linked by a liquid meniscus to a substrate or a tool is an inexpensive way to overcome the current limitations of the assembly processes at microscale by ge ...
CAMBRIDGE UNIV PRESS2021
A review. Recent achievements of nanochem. research in the fabrication of colloidal nanoheterostructures are reviewed through revisiting relevant papers and related patents. Attention is focused on newly conceived generations of hybrid nanocrystals (HNCs) ...
We use spherical cap harmonic (SCH) basis functions to analyse and reconstruct the morphology of scanned genus-0 rough surface patches with open edges. We first develop a novel one-to-one conformal mapping algorithm with minimal area distortion for paramet ...