In geometry, a spherical sector, also known as a spherical cone, is a portion of a sphere or of a ball defined by a conical boundary with apex at the center of the sphere. It can be described as the union of a spherical cap and the cone formed by the center of the sphere and the base of the cap. It is the three-dimensional analogue of the sector of a circle.
If the radius of the sphere is denoted by r and the height of the cap by h, the volume of the spherical sector is
This may also be written as
where φ is half the cone angle, i.e., φ is the angle between the rim of the cap and the direction to the middle of the cap as seen from the sphere center.
The volume V of the sector is related to the area A of the cap by:
The curved surface area of the spherical sector (on the surface of the sphere, excluding the cone surface) is
It is also
where Ω is the solid angle of the spherical sector in steradians, the SI unit of solid angle. One steradian is defined as the solid angle subtended by a cap area of A = r2.
The volume can be calculated by integrating the differential volume element
over the volume of the spherical sector,
where the integrals have been separated, because the integrand can be separated into a product of functions each with one dummy variable.
The area can be similarly calculated by integrating the differential spherical area element
over the spherical sector, giving
where φ is inclination (or elevation) and θ is azimuth (right). Notice r is a constant. Again, the integrals can be separated.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In geometry, a spherical segment is the solid defined by cutting a sphere or a ball with a pair of parallel planes. It can be thought of as a spherical cap with the top truncated, and so it corresponds to a spherical frustum. The surface of the spherical segment (excluding the bases) is called spherical zone. If the radius of the sphere is called R, the radii of the spherical segment bases are r_1 and r_2, and the height of the segment (the distance from one parallel plane to the other) called h, then the
In geometry, a spherical wedge or ungula is a portion of a ball bounded by two plane semidisks and a spherical lune (termed the wedge's base). The angle between the radii lying within the bounding semidisks is the dihedral α. If AB is a semidisk that forms a ball when completely revolved about the z-axis, revolving AB only through a given α produces a spherical wedge of the same angle α. Beman (2008) remarks that "a spherical wedge is to the sphere of which it is a part as the angle of the wedge is to a perigon.
In geometry, a spherical cap or spherical dome is a portion of a sphere or of a ball cut off by a plane. It is also a spherical segment of one base, i.e., bounded by a single plane. If the plane passes through the center of the sphere (forming a great circle), so that the height of the cap is equal to the radius of the sphere, the spherical cap is called a hemisphere.
In the fields of microgripping and microassembly, the self-alignment motion of a solid micro-object linked by a liquid meniscus to a substrate or a tool is an inexpensive way to overcome the current limitations of the assembly processes at microscale by ge ...
We use spherical cap harmonic (SCH) basis functions to analyse and reconstruct the morphology of scanned genus-0 rough surface patches with open edges. We first develop a novel one-to-one conformal mapping algorithm with minimal area distortion for paramet ...
The jamming transition of non-spherical particles is fundamentally different from the spherical case. Non-spherical particles are hypostatic at their jamming points, while isostaticity is ensured in the case of the jamming of spherical particles. This stru ...