In geometry, a spherical cap or spherical dome is a portion of a sphere or of a ball cut off by a plane. It is also a spherical segment of one base, i.e., bounded by a single plane. If the plane passes through the center of the sphere (forming a great circle), so that the height of the cap is equal to the radius of the sphere, the spherical cap is called a hemisphere.
The volume of the spherical cap and the area of the curved surface may be calculated using combinations of
The radius of the sphere
The radius of the base of the cap
The height of the cap
The polar angle between the rays from the center of the sphere to the apex of the cap (the pole) and the edge of the disk forming the base of the cap
If denotes the latitude in geographic coordinates, then , and .
The relationship between and is relevant as long as . For example, the red section of the illustration is also a spherical cap for which .
The formulas using and can be rewritten to use the radius of the base of the cap instead of , using the Pythagorean theorem:
so that
Substituting this into the formulas gives:
Note that aside from the calculus based argument below, the area of the spherical cap may be derived from the volume of the spherical sector, by an intuitive argument, as
The intuitive argument is based upon summing the total sector volume from that of infinitesimal triangular pyramids. Utilizing the pyramid (or cone) volume formula of , where is the infinitesimal area of each pyramidal base (located on the surface of the sphere) and is the height of each pyramid from its base to its apex (at the center of the sphere). Since each , in the limit, is constant and equivalent to the radius of the sphere, the sum of the infinitesimal pyramidal bases would equal the area of the spherical sector, and:
The volume and area formulas may be derived by examining the rotation of the function
for , using the formulas the surface of the rotation for the area and the solid of the revolution for the volume.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
This lecture presents ongoing work on how scientific questions can be tackled using machine learning. Machine learning enables extracting knowledge from data computationally and in an automatized way.
Explores polar coordinates, position, velocity, and acceleration vectors in Cartesian and polar systems, including cylindrical and spherical coordinates.
In geometry, a spherical segment is the solid defined by cutting a sphere or a ball with a pair of parallel planes. It can be thought of as a spherical cap with the top truncated, and so it corresponds to a spherical frustum. The surface of the spherical segment (excluding the bases) is called spherical zone. If the radius of the sphere is called R, the radii of the spherical segment bases are r_1 and r_2, and the height of the segment (the distance from one parallel plane to the other) called h, then the
In geometry, a spherical wedge or ungula is a portion of a ball bounded by two plane semidisks and a spherical lune (termed the wedge's base). The angle between the radii lying within the bounding semidisks is the dihedral α. If AB is a semidisk that forms a ball when completely revolved about the z-axis, revolving AB only through a given α produces a spherical wedge of the same angle α. Beman (2008) remarks that "a spherical wedge is to the sphere of which it is a part as the angle of the wedge is to a perigon.
In geometry, a spherical sector, also known as a spherical cone, is a portion of a sphere or of a ball defined by a conical boundary with apex at the center of the sphere. It can be described as the union of a spherical cap and the cone formed by the center of the sphere and the base of the cap. It is the three-dimensional analogue of the sector of a circle. If the radius of the sphere is denoted by r and the height of the cap by h, the volume of the spherical sector is This may also be written as where φ is half the cone angle, i.
The connectedness percolation threshold (phi(c)) for spherically symmetric, randomly distributed fractal aggregates is investigated as a function of the fractal dimension (d(F)) of the aggregates through a mean-field approach. A pair of aggregates (each of ...
SPRINGER2022
, ,
With the application requirements of wireless technology in implantable bioelectronics, knowledge of the fundamental limits for implanted antennas becomes critical. In this work, we investigated the variation of maximum power density within simplified body ...
IEEE2022
,
We use spherical cap harmonic (SCH) basis functions to analyse and reconstruct the morphology of scanned genus-0 rough surface patches with open edges. We first develop a novel one-to-one conformal mapping algorithm with minimal area distortion for paramet ...