Summary
In computer architecture, Amdahl's law (or Amdahl's argument) is a formula which gives the theoretical speedup in latency of the execution of a task at fixed workload that can be expected of a system whose resources are improved. It states that "the overall performance improvement gained by optimizing a single part of a system is limited by the fraction of time that the improved part is actually used". It is named after computer scientist Gene Amdahl, and was presented at the American Federation of Information Processing Societies (AFIPS) Spring Joint Computer Conference in 1967. Amdahl's law is often used in parallel computing to predict the theoretical speedup when using multiple processors. For example, if a program needs 20 hours to complete using a single thread, but a one-hour portion of the program cannot be parallelized, therefore only the remaining 19 hours' (p = 0.95) execution time can be parallelized, then regardless of how many threads are devoted to a parallelized execution of this program, the minimum execution time is always more than 1 hour. Hence, the theoretical speedup is less than 20 times the single thread performance, . Amdahl's law can be formulated in the following way: where Slatency is the theoretical speedup of the execution of the whole task; s is the speedup of the part of the task that benefits from improved system resources; p is the proportion of execution time that the part benefiting from improved resources originally occupied. Furthermore, shows that the theoretical speedup of the execution of the whole task increases with the improvement of the resources of the system and that regardless of the magnitude of the improvement, the theoretical speedup is always limited by the part of the task that cannot benefit from the improvement. Amdahl's law applies only to the cases where the problem size is fixed. In practice, as more computing resources become available, they tend to get used on larger problems (larger datasets), and the time spent in the parallelizable part often grows much faster than the inherently serial work.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.