Pasteurization or pasteurisation is a process of food preservation in which packaged and non-packaged foods (such as milk and fruit juices) are treated with mild heat, usually to less than , to eliminate pathogens and extend shelf life.
The process is intended to destroy or deactivate microorganisms and enzymes that contribute to food spoilage or risk of disease, including vegetative bacteria, but most bacterial spores survive the process.
The process is named after the French microbiologist Louis Pasteur whose research in the 1860s demonstrated that thermal processing would deactivate unwanted microorganisms in wine. Spoilage enzymes are also inactivated during pasteurization. Today, pasteurization is used widely in the dairy industry and other food processing industries to achieve food preservation and food safety.
By the year 1999, most liquid products were heat treated in a continuous system where heat can be applied using a heat exchanger or the direct or indirect use of hot water and steam. Due to the mild heat, there are minor changes to the nutritional quality and sensory characteristics of the treated foods. Pascalization or high pressure processing (HPP) and pulsed electric field (PEF) are non-thermal processes that are also used to pasteurize foods.
The process of heating wine for preservation purposes has been known in China since AD 1117, and was documented in Japan in the diary Tamonin-nikki, written by a series of monks between 1478 and 1618.
Much later, in 1768, research performed by Italian priest and scientist Lazzaro Spallanzani proved a product could be made "sterile" after thermal processing. Spallanzani boiled meat broth for one hour, sealed the container immediately after boiling, and noticed that the broth did not spoil and was free from microorganisms. In 1795, a Parisian chef and confectioner named Nicolas Appert began experimenting with ways to preserve foodstuffs, succeeding with soups, vegetables, juices, dairy products, jellies, jams, and syrups.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course will deliver basic knowledge on the principles of food fermentation and enzyme technology. The course will also present benefits that food biotechnology can bring in terms of Nutrition & He
Cheese is a dairy product produced in wide ranges of flavors, textures, and forms by coagulation of the milk protein casein. It comprises proteins and fat from milk (usually the milk of cows, buffalo, goats, or sheep). During production, milk is usually acidified and either the enzymes of rennet or bacterial enzymes with similar activity are added to cause the casein to coagulate. The solid curds are then separated from the liquid whey and pressed into finished cheese.
Yogurt (UKˈjɒɡərt; USˈjoʊɡərt, from yoğurt, also spelled yoghurt, yogourt or yoghourt) is a food produced by bacterial fermentation of milk. The bacteria used to make yogurt are known as yogurt cultures. Fermentation of sugars in the milk by these bacteria produces lactic acid, which acts on milk protein to give yogurt its texture and characteristic tart flavor. Cow's milk is the milk most commonly used to make yogurt. Milk from water buffalo, goats, ewes, mares, camels, and yaks are also used to produce yogurt.
Bacteria (bækˈtɪəriə; : bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were among the first life forms to appear on Earth, and are present in most of its habitats. Bacteria inhabit soil, water, acidic hot springs, radioactive waste, and the deep biosphere of Earth's crust. Bacteria play a vital role in many stages of the nutrient cycle by recycling nutrients and the fixation of nitrogen from the atmosphere.
Explores bacterial growth, nitrification, and bioremediation techniques in microbial control.
Delves into the principles and methods of bioprocess sterilization, emphasizing the importance of maintaining sterility and safety.
Delves into the innovations in food biotechnology, including synbiotics supplements and probiotics in locally produced yoghurt, highlighting their economic and health benefits.
, ,
The present bi-partite work describes the development and validation of a mechanistic kinetic model of SODIS E. coli inactivation, enhanced with H2O2. In this first part, the mechanism of the baseline dark phenomena is modelled. A mechanistic model involvi ...
ELSEVIER SCIENCE SA2022
,
This paper proposes a general superstructure and a Mixed-Integer Nonlinear Programming (MINLP) model for the synthesis and simultaneous optimisation and Heat Integration (HI) of Single- and Multiple Effect Evaporation (SEE/MEE) systems including Mechanical ...
We study the bactericidal efficacy of surface dielectric barrier discharge low-temperature plasma treatments, powered by nanosecond high voltage pulses. We achieve similar to 4-log reduction in Escherichia coli population, after 10 min treatments, at a dis ...