In the semiconductor industry, the term high-κ dielectric refers to a material with a high dielectric constant (κ, kappa), as compared to silicon dioxide. High-κ dielectrics are used in semiconductor manufacturing processes where they are usually used to replace a silicon dioxide gate dielectric or another dielectric layer of a device. The implementation of high-κ gate dielectrics is one of several strategies developed to allow further miniaturization of microelectronic components, colloquially referred to as extending Moore's Law. Sometimes these materials are called "high-k" (pronounced "high kay"), instead of "high-κ" (high kappa). Silicon dioxide () has been used as a gate oxide material for decades. As metal–oxide–semiconductor field-effect transistors (MOSFETs) have decreased in size, the thickness of the silicon dioxide gate dielectric has steadily decreased to increase the gate capacitance (per unit area) and thereby drive current (per device width), raising device performance. As the thickness scales below 2 nm, leakage currents due to tunneling increase drastically, leading to high power consumption and reduced device reliability. Replacing the silicon dioxide gate dielectric with a high-κ material allows increased gate capacitance without the associated leakage effects. The gate oxide in a MOSFET can be modeled as a parallel plate capacitor. Ignoring quantum mechanical and depletion effects from the Si substrate and gate, the capacitance C of this parallel plate capacitor is given by where A is the capacitor area κ is the relative dielectric constant of the material (3.9 for silicon dioxide) ε0 is the permittivity of free space t is the thickness of the capacitor oxide insulator Since leakage limitation constrains further reduction of t, an alternative method to increase gate capacitance is to alter κ by replacing silicon dioxide with a high-κ material. In such a scenario, a thicker gate oxide layer might be used which can reduce the leakage current flowing through the structure as well as improving the gate dielectric reliability.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (20)
PHYS-201(d): General physics: electromagnetism
The topics covered by the course are concepts of fluid mechanics, waves, and electromagnetism.
EE-320: Analog IC design
Introduction to the design of analog CMOS integrated circuits at the transistor level. Understanding and design of basic structures.
MICRO-623: Modelling micro-/nano- field effect electron devices
The course provides an in depth modeling of emerging field effect transistors in CMOS technologty. Starting from the basis, the course will gardually introduce essential aspects to end up with a rigor
Show more
Related lectures (58)
Capacitors and Energy Storage
Covers capacitance, energy storage, dielectrics, and polarization in electric circuits.
Printed Microwave Lines: Advantages and Drawbacks
Explores the advantages and drawbacks of printed microwave lines manufacturing and substrates.
Dielectric Materials: Polarization and Capacitors
Explores dielectric materials, polarization, and capacitors, focusing on bound charges and the impact of dielectric constant.
Show more
Related publications (425)

High-κ Wide-Gap Layered Dielectric for Two-Dimensional van der Waals Heterostructures

Andras Kis, Edoardo Lopriore, Asmund Kjellegaard Ottesen, Gabriele Pasquale

van der Waals heterostructures of two-dimensional materials have unveiled frontiers in condensed matter physics, unlocking unexplored possibilities in electronic and photonic device applications. However, the investigation of wide-gap, high-kappa layered d ...
2024

SPAD Developed in 55 nm Bipolar-CMOS-DMOS Technology Achieving Near 90% Peak PDP

Edoardo Charbon, Claudio Bruschini, Ekin Kizilkan, Pouyan Keshavarzian, Won Yong Ha, Francesco Gramuglia, Myung Jae Lee

We present a single-photon avalanche diode (SPAD) developed in 55 nm bipolar-CMOS-DMOS (BCD) technology, which achieves high photon detection probability (PDP) while its breakdown voltage is lower than 20 V. To enhance the PDP performance, the SPAD junctio ...
Ieee-Inst Electrical Electronics Engineers Inc2024

Highly dispersed nanomaterials in polymer matrix via aerosol-jet-based multi-material 3D printing

Michael James Henry Smith

Polymer-based nanocomposites emerged in the 1960s as a groundbreaking approach to advanced materials. By incorporating robust, durable, and multifunctional nanomaterials into a polymer matrix, the performance of nanocomposites has significantly surpassed t ...
Elsevier2024
Show more
Related concepts (13)
Atomic layer deposition
Atomic layer deposition (ALD) is a thin-film deposition technique based on the sequential use of a gas-phase chemical process; it is a subclass of chemical vapour deposition. The majority of ALD reactions use two chemicals called precursors (also called "reactants"). These precursors react with the surface of a material one at a time in a sequential, self-limiting, manner. A thin film is slowly deposited through repeated exposure to separate precursors.
Silicon–germanium
SiGe (ˈsɪɡiː or ˈsaɪdʒiː), or silicon–germanium, is an alloy with any molar ratio of silicon and germanium, i.e. with a molecular formula of the form Si1−xGex. It is commonly used as a semiconductor material in integrated circuits (ICs) for heterojunction bipolar transistors or as a strain-inducing layer for CMOS transistors. IBM introduced the technology into mainstream manufacturing in 1989. This relatively new technology offers opportunities in mixed-signal circuit and analog circuit IC design and manufacture.
Multigate device
A multigate device, multi-gate MOSFET or multi-gate field-effect transistor (MuGFET) refers to a metal–oxide–semiconductor field-effect transistor (MOSFET) that has more than one gate on a single transistor. The multiple gates may be controlled by a single gate electrode, wherein the multiple gate surfaces act electrically as a single gate, or by independent gate electrodes. A multigate device employing independent gate electrodes is sometimes called a multiple-independent-gate field-effect transistor (MIGFET).
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.