In mathematics, a canonical map, also called a natural map, is a map or morphism between objects that arises naturally from the definition or the construction of the objects. Often, it is a map which preserves the widest amount of structure. A choice of a canonical map sometimes depends on a convention (e.g., a sign convention). A closely related notion is a structure map or structure morphism; the map or morphism that comes with the given structure on the object. These are also sometimes called canonical maps. A canonical isomorphism is a canonical map that is also an isomorphism (i.e., invertible). In some contexts, it might be necessary to address an issue of choices of canonical maps or canonical isomorphisms; for a typical example, see prestack. For a discussion of the problem of defining a canonical map see Kevin Buzzard's talk at the 2022 Grothendieck conference. If N is a normal subgroup of a group G, then there is a canonical surjective group homomorphism from G to the quotient group G/N, that sends an element g to the coset determined by g. If I is an ideal of a ring R, then there is a canonical surjective ring homomorphism from R onto the quotient ring R/I, that sends an element r to its coset I+r. If V is a vector space, then there is a canonical map from V to the second dual space of V, that sends a vector v to the linear functional fv defined by fv(λ) = λ(v). If f: R → S is a homomorphism between commutative rings, then S can be viewed as an algebra over R. The ring homomorphism f is then called the structure map (for the algebra structure). The corresponding map on the prime spectra f*: Spec(S) → Spec(R) is also called the structure map. If E is a vector bundle over a topological space X, then the projection map from E to X is the structure map. In topology, a canonical map is a function f mapping a set X → X/R (X modulo R), where R is an equivalence relation on X, that takes each x in X to the equivalence class [x] modulo R.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.