A zinc finger is a small protein structural motif that is characterized by the coordination of one or more zinc ions (Zn2+) which stabilizes the fold. It was originally coined to describe the finger-like appearance of a hypothesized structure from the African clawed frog (Xenopus laevis) transcription factor IIIA. However, it has been found to encompass a wide variety of differing protein structures in eukaryotic cells. Xenopus laevis TFIIIA was originally demonstrated to contain zinc and require the metal for function in 1983, the first such reported zinc requirement for a gene regulatory protein followed soon thereafter by the Krüppel factor in Drosophila. It often appears as a metal-binding domain in multi-domain proteins. Proteins that contain zinc fingers (zinc finger proteins) are classified into several different structural families. Unlike many other clearly defined supersecondary structures such as Greek keys or β hairpins, there are a number of types of zinc fingers, each with a unique three-dimensional architecture. A particular zinc finger protein's class is determined by this three-dimensional structure, but it can also be recognized based on the primary structure of the protein or the identity of the ligands coordinating the zinc ion. In spite of the large variety of these proteins, however, the vast majority typically function as interaction modules that bind DNA, RNA, proteins, or other small, useful molecules, and variations in structure serve primarily to alter the binding specificity of a particular protein. Since their original discovery and the elucidation of their structure, these interaction modules have proven ubiquitous in the biological world and may be found in 3% of the genes of the human genome. In addition, zinc fingers have become extremely useful in various therapeutic and research capacities. Engineering zinc fingers to have an affinity for a specific sequence is an area of active research, and zinc finger nucleases and zinc finger transcription factors are two of the most important applications of this to be realized to date.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (3)
BIO-315: Structural biology
The main focus of this course is on the molecular interactions defining the structure, dynamics and function of biological systems. The principal experimental and computational techniques used in stru
BIOENG-320: Synthetic biology
This advanced Bachelor/Master level course will cover fundamentals and approaches at the interface of biology, chemistry, engineering and computer science for diverse fields of synthetic biology. This
BIO-212: Biological chemistry I
Biochemistry is a key discipline for the Life Sciences. Biological Chemistry I and II are two tightly interconnected courses that aim to describe and understand in molecular terms the processes that m
Publications associées (92)
Concepts associés (15)
Domaine protéique
redresse=1.15|vignette|Exemples de structures de protéines organisées en domaines distincts. Le domaine de couleur brique, appelé domaine PH, est commun aux deux protéines,. Sa fonction est de fixer le phosphatidylinositol-3,4,5-trisphosphate (PIP3) Un domaine protéique est une partie d'une protéine capable d'adopter une structure de manière autonome ou partiellement autonome du reste de la molécule. C'est un élément modulaire de la structure des protéines qui peuvent ainsi être composées de l'assemblage de plusieurs de ces domaines.
BRCA1
Le gène BRCA1 (abréviation de breast cancer 1) est un gène humain découvert en 1990 par Mary-Claire King, appartenant à une classe de gènes suppresseurs de tumeur, qui maintiennent l'intégrité génomique afin de prévenir la prolifération incontrôlée de cellules mammaires. La protéine BRCA1 est multifactorielle : elle est impliquée dans la réparation des dommages de l'ADN, l'ubiquitination, la régulation transcriptionnelle, ainsi que dans d'autres fonctions.
Super-famille de protéines
Une superfamille (ou super-famille) de protéines est le regroupement le plus large (clade) de protéines pour lesquelles il est possible d'identifier un ancêtre commun par homologie. Cet ancêtre commun est généralement déduit par et similitude mécanique, même lorsque aucune similitude entre les séquences n'est détectable. Les super-familles contiennent généralement plusieurs familles de protéines présentant des similitudes de séquences au sein de ces familles.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.