Summary
A longest common subsequence (LCS) is the longest subsequence common to all sequences in a set of sequences (often just two sequences). It differs from the longest common substring: unlike substrings, subsequences are not required to occupy consecutive positions within the original sequences. The problem of computing longest common subsequences is a classic computer science problem, the basis of data comparison programs such as the diff utility, and has applications in computational linguistics and bioinformatics. It is also widely used by revision control systems such as Git for reconciling multiple changes made to a revision-controlled collection of files. For example, consider the sequences (ABCD) and (ACBAD). They have 5 length-2 common subsequences: (AB), (AC), (AD), (BD), and (CD); 2 length-3 common subsequences: (ABD) and (ACD); and no longer common subsequences. So (ABD) and (ACD) are their longest common subsequences. For the general case of an arbitrary number of input sequences, the problem is NP-hard. When the number of sequences is constant, the problem is solvable in polynomial time by dynamic programming. Given sequences of lengths , a naive search would test each of the subsequences of the first sequence to determine whether they are also subsequences of the remaining sequences; each subsequence may be tested in time linear in the lengths of the remaining sequences, so the time for this algorithm would be For the case of two sequences of n and m elements, the running time of the dynamic programming approach is O(n × m). For an arbitrary number of input sequences, the dynamic programming approach gives a solution in There exist methods with lower complexity, which often depend on the length of the LCS, the size of the alphabet, or both. The LCS is not necessarily unique; in the worst case, the number of common subsequences is exponential in the lengths of the inputs, so the algorithmic complexity must be at least exponential.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
CS-250: Algorithms I
The students learn the theory and practice of basic concepts and techniques in algorithms. The course covers mathematical induction, techniques for analyzing algorithms, elementary data structures, ma
Related publications (8)
Related concepts (4)
Levenshtein distance
In information theory, linguistics, and computer science, the Levenshtein distance is a string metric for measuring the difference between two sequences. Informally, the Levenshtein distance between two words is the minimum number of single-character edits (insertions, deletions or substitutions) required to change one word into the other. It is named after the Soviet mathematician Vladimir Levenshtein, who considered this distance in 1965.
Edit distance
In computational linguistics and computer science, edit distance is a string metric, i.e. a way of quantifying how dissimilar two strings (e.g., words) are to one another, that is measured by counting the minimum number of operations required to transform one string into the other. Edit distances find applications in natural language processing, where automatic spelling correction can determine candidate corrections for a misspelled word by selecting words from a dictionary that have a low distance to the word in question.
Diff
In computing, the utility diff is a data comparison tool that computes and displays the differences between the contents of files. Unlike edit distance notions used for other purposes, diff is line-oriented rather than character-oriented, but it is like Levenshtein distance in that it tries to determine the smallest set of deletions and insertions to create one file from the other. The utility displays the changes in one of several standard formats, such that both humans or computers can parse the changes, and use them for patching.
Show more