The down quark (symbol: d) is a type of elementary particle, and a major constituent of matter. The down quark is the second-lightest of all quarks, and combines with other quarks to form composite particles called hadrons. Down quarks are most commonly found in atomic nuclei, where it combines with up quarks to form protons and neutrons. The proton is made of one down quark with two up quarks, and the neutron is made up of two down quarks with one up quark. Because they are found in every single known atom, down quarks are present in all everyday matter that we interact with. The down quark is part of the first generation of matter, has an electric charge of −1/3 e and a bare mass of 4.7MeV/c2. Like all quarks, the down quark is an elementary fermion with spin 1/2, and experiences all four fundamental interactions: gravitation, electromagnetism, weak interactions, and strong interactions. The antiparticle of the down quark is the down antiquark (sometimes called antidown quark or simply antidown), which differs from it only in that some of its properties have equal magnitude but opposite sign. Its existence (along with that of the up and strange quarks) was postulated in 1964 by Murray Gell-Mann and George Zweig to explain the Eightfold Way classification scheme of hadrons. The down quark was first observed by experiments at the Stanford Linear Accelerator Center in 1968. In the beginnings of particle physics (first half of the 20th century), hadrons such as protons, neutrons, and pions were thought to be elementary particles. However, as new hadrons were discovered, the 'particle zoo' grew from a few particles in the early 1930s and 1940s to several dozens of them in the 1950s. The relationships between each of them was unclear until 1961, when Murray Gell-Mann and Yuval Ne'eman (independently of each other) proposed a hadron classification scheme called the Eightfold Way, or in more technical terms, SU(3) flavor symmetry. This classification scheme organized the hadrons into isospin multiplets, but the physical basis behind it was still unclear.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (8)
PHYS-415: Particle physics I
Presentation of particle properties, their symmetries and interactions. Introduction to quantum electrodynamics and to the Feynman rules.
PHYS-416: Particle physics II
This course aims to make students familiar and comfortable with the main concepts of particle physics, providing a clear connection between the theory and relevant experimental results, including the
PHYS-741: Gauge Theories and the Standard Model
The goal of this course is to explain the conceptual and mathematical bases of the Standard Model of fundamental interactions and to illustrate in detail its phenomenological consequences.
Afficher plus
Séances de cours associées (26)
Vue d'ensemble de la physique des particules et de la diffusion de Rutherford
Couvre les constituants de la matière, les forces fondamentales, le modèle standard, les unités naturelles et les expériences dinteraction des particules.
Grande expansion N: modèles vectoriels
Explore l'expansion de Large N dans les modèles vectoriels, en se concentrant sur les modèles matriciels, les théories de jauge et le couplage Hooft.
Symmetries et modèle Quark
Explore les symétries en physique des particules, en se concentrant sur le modèle des quarks et les lois de conservation, conduisant à la symétrie des isospins et des saveurs.
Afficher plus
Publications associées (47)

Azimuthal Correlations within Exclusive Dijets with Large Momentum Transfer in Photon-Lead Collisions

Production of Chern-Simons bosons in decays of mesons

Kyrylo Bondarenko, Pavlo Kashko

We consider the effective interaction of quarks with a new GeV-scale vector particle that couples to electroweak gauge bosons by the so-called effective Chern-Simons (CS) interaction. We call this particle the CS boson. We construct effective Lagrangian of ...
IOP Publishing Ltd2022

Search for long-lived particles decaying to e(+/-)mu(-/+)nu

Jian Wang, Lesya Shchutska, Olivier Schneider, Yiming Li, Yi Zhang, Aurelio Bay, Guido Haefeli, Christoph Frei, Frédéric Blanc, Tatsuya Nakada, Michel De Cian, François Fleuret, Elena Graverini, Renato Quagliani, Federico Betti, Aravindhan Venkateswaran, Vitalii Lisovskyi, Sebastian Schulte, Veronica Sølund Kirsebom, Elisabeth Maria Niel, Ettore Zaffaroni, Mingkui Wang, Zhirui Xu, Chao Wang, Lei Zhang, Ho Ling Li, Mark Tobin, Minh Tâm Tran, Niko Neufeld, Matthew Needham, Marc-Olivier Bettler, Maurizio Martinelli, Vladislav Balagura, Donal Patrick Hill, Liang Sun, Pietro Marino, Xiaoxue Han, Liupan An, Federico Leo Redi, Plamen Hristov Hopchev, Maxime Schubiger, Hang Yin, Violaine Bellée, Preema Rennee Pais, Pavol Stefko, Tara Nanut, Maria Elena Stramaglia, Yao Zhou, Tommaso Colombo, Vladimir Macko, Guillaume Max Pietrzyk, Evgenii Shmanin, Maxim Karpov, Simone Meloni, Xiaoqing Zhou, Surapat Ek-In, Carina Trippl, Sara Celani, Marco Guarise, Serhii Cholak, Dipanwita Dutta, Zheng Wang, Yong Yang, Yi Wang, Hao Liu, Hans Dijkstra, Gerhard Raven, Peter Clarke, Frédéric Teubert, Giovanni Carboni, Victor Coco, Shuai Liu, Adam Davis, Paolo Durante, Yu Zheng, Anton Petrov, Maxim Borisyak, Feng Jiang, Zhipeng Tang, Xuan Li, Alexey Boldyrev, Almagul Kondybayeva, Hossein Afsharnia

Long-lived particles decaying to e(+/-) mu(-/+)nu, with masses between 7 and 50 GeV/c(2) and lifetimes between 2 and 50 ps, are searched for by looking at displaced vertices containing electrons and muons of opposite charges. The search is performed using ...
SPRINGER2021
Afficher plus
Concepts associés (27)
Quark model
In particle physics, the quark model is a classification scheme for hadrons in terms of their valence quarks—the quarks and antiquarks which give rise to the quantum numbers of the hadrons. The quark model underlies "flavor SU(3)", or the Eightfold Way, the successful classification scheme organizing the large number of lighter hadrons that were being discovered starting in the 1950s and continuing through the 1960s. It received experimental verification beginning in the late 1960s and is a valid effective classification of them to date.
Saveur (physique)
La saveur, en physique des particules, est une caractéristique permettant de distinguer différents types de leptons et de quarks, deux sous-familles des fermions. Les leptons se déclinent en trois saveurs et les quarks en six saveurs. Les saveurs permettent de distinguer certaines classes de particules dont les autres propriétés (charge électrique, interactivité) sont similaires. Les dénominations des saveurs ont été introduites par Murray Gell-Mann, baptisant le quark étrange lors de la détection du kaon en 1964.
Isospin
En physique nucléaire et en physique des particules, l'isospin (I) est un nombre quantique dans le domaine de l’interaction forte. Plus précisément, la symétrie d'isospin est un sous-ensemble de la symétrie de saveur vue plus largement dans les interactions des baryons et des mésons. Le nom de ce concept contient le terme spin parce que sa description quantique est mathématiquement similaire au moment cinétique (en particulier dans la manière dont il est couplé, par exemple, une paire de proton-neutron peut être couplée soit dans un état d'isospin 1 ou 0).
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.