vignette|Illustration d'un produit cartésien A x B où A={x,y,z} et B={1,2,3}. Cet article fait référence au concept mathématique sur les ensembles. Pour les graphes, voir produit cartésien de graphes. En mathématiques, le produit cartésien de deux ensembles X et Y, appelé également ensemble-produit, est l'ensemble de tous les couples dont la première composante appartient à X et la seconde à Y. On généralise facilement cette notion, valable pour deux ensembles, à celle de produit cartésien fini, qui est un ensemble de n-uplets dont les composantes appartiennent à n ensembles. La généralisation à un produit cartésien infini nécessite, quant à elle, la notion de fonction. Les produits cartésiens doivent leur nom à René Descartes, qui, en créant la géométrie analytique, a le premier utilisé ce que nous appelons maintenant R = R × R pour représenter le plan euclidien, et R = R × R × R pour représenter l'espace euclidien tri-dimensionnel (R désigne la droite réelle). Pour tout ensemble A et tout ensemble B, il existe un ensemble P dont les éléments sont tous les couples dont la première composante appartient à A et la seconde à B :.Cet ensemble est noté A × B (lire « A croix B ») et est appelé produit cartésien de A par B. Cas particulier : A × A est noté A et appelé carré cartésien de A :. Soit A l'ensemble { A, R, D, V, 10, 9, 8, 7, 6, 5, 4, 3, 2 }. Soit B l'ensemble { pique, cœur, carreau, trèfle }. Alors le produit cartésien A × B de ces deux ensembles est un jeu classique de 52 cartes, c'est-à-dire l'ensemble : { (A, pique) ... (2, pique) , (A, cœur) ... (2, cœur) , (A, carreau) ... (2, carreau) , (A, trèfle) ... (2, trèfle) }. Un produit cartésien A × B est vide si et seulement si A ou B est vide. En particulier : pour tout ensemble , . Les deux facteurs d'un produit sont entièrement déterminés par ce produit, s'il est non vide. Plus précisément : si alors et de même, si alors . Si A et B sont finis, alors le cardinal de A × B est égal au produit des cardinaux de A et de B.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.