Résumé
En mathématiques, la réunion disjointe est une opération ensembliste. Contrairement à l'union usuelle, le cardinal d'une union disjointe d'ensembles est toujours égal à la somme de leurs cardinaux. L'union disjointe d'une famille d'ensembles correspond à leur somme en théorie des catégories, c'est pourquoi on l'appelle aussi somme disjointe. C’est une opération fréquente en topologie et en informatique théorique. Dans une réunion A∪B de deux ensembles, l'origine des éléments y figurant est perdue et les éléments de l'intersection ne sont comptés qu'une seule fois. Dans certaines situations, on désire conserver cette information et prendre en compte deux fois les éléments de l'intersection. Pour cela, on réunit non pas directement A et B, mais deux ensembles disjoints, copies de A et B de la forme { α } × A et { β } × B , où α et β sont deux symboles quelconques distincts servant à identifier les ensembles A et B (par exemple 0 et 1) et × désigne le produit cartésien. L'union disjointe, encore appelée « somme disjointe » ou « somme cartésienne », de deux ensembles A et B est ainsi définie par : Exemples Soient A la paire {1, 2} et B l'ensemble à trois éléments {2, 3, 4}. Leur réunion (ordinaire) n'a que quatre éléments car ces deux ensembles ne sont pas disjoints. Pour construire leur union disjointe, on commence par les « numéroter » par deux « indices » distincts arbitraires a et b : on pose I = {a, b}, E = A et E = B. Puis on prend la réunion de deux « copies » de A et B qui, elles, sont disjointes : {a}×A et {b}×B. La réunion disjointe de (E) est la partiede {a, b}×{1, 2, 3, 4}. Elle a 2 + 3 = 5 éléments. De même, l'union disjointe de la paire {1, 2} avec elle-même est (en choisissant arbitrairement deux indices distincts, par exemple cette fois : 0 et 1) : La somme disjointe peut se généraliser à plus de deux ensembles. Par exemple, pour trois ensembles quelconques A, B et C: On peut définir plus généralement la somme disjointe de n ensembles quelconques : On peut également généraliser cette notion à des ensembles quelconques (non nécessairement finis) d'indices, et former par exemple des unions disjointes dénombrables.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
MATH-410: Riemann surfaces
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
Publications associées (3)
Concepts associés (11)
Produit cartésien
vignette|Illustration d'un produit cartésien A x B où A={x,y,z} et B={1,2,3}. Cet article fait référence au concept mathématique sur les ensembles. Pour les graphes, voir produit cartésien de graphes. En mathématiques, le produit cartésien de deux ensembles X et Y, appelé également ensemble-produit, est l'ensemble de tous les couples dont la première composante appartient à X et la seconde à Y. On généralise facilement cette notion, valable pour deux ensembles, à celle de produit cartésien fini, qui est un ensemble de n-uplets dont les composantes appartiennent à n ensembles.
Produit (catégorie)
Dans une catégorie, le produit d'une famille d'objets est sa limite, lorsqu'elle existe. Il est donc caractérisé par une propriété universelle ou de manière équivalente comme foncteur représentable. Soit une catégorie et une famille d'objets de . On cherche un couple , où X soit un objet de et une famille de morphismes , tel que pour tout objet Y de et pour toute famille de morphismes , il existe un unique morphisme tel que pour tout indice i, on ait . Si un tel couple existe, on dit que c'est un produit des .
Matroïde
En mathématiques, et plus particulièrement en combinatoire, un matroïde est une structure introduite comme un cadre général pour le concept d'indépendance linéaire. Elle est donc naturellement liée à l'algèbre linéaire (déjà au niveau du vocabulaire : indépendant, base, rang), mais aussi à la théorie des graphes (circuit, cycle), à l'algorithmique (algorithme glouton), et à la géométrie (pour diverses questions liées à la représentation). La notion a été introduite en 1935 par Whitney. Le mot matroïde provient du mot matrice.
Afficher plus