En mathématiques, la réunion disjointe est une opération ensembliste. Contrairement à l'union usuelle, le cardinal d'une union disjointe d'ensembles est toujours égal à la somme de leurs cardinaux. L'union disjointe d'une famille d'ensembles correspond à leur somme en théorie des catégories, c'est pourquoi on l'appelle aussi somme disjointe. C’est une opération fréquente en topologie et en informatique théorique. Dans une réunion A∪B de deux ensembles, l'origine des éléments y figurant est perdue et les éléments de l'intersection ne sont comptés qu'une seule fois. Dans certaines situations, on désire conserver cette information et prendre en compte deux fois les éléments de l'intersection. Pour cela, on réunit non pas directement A et B, mais deux ensembles disjoints, copies de A et B de la forme { α } × A et { β } × B , où α et β sont deux symboles quelconques distincts servant à identifier les ensembles A et B (par exemple 0 et 1) et × désigne le produit cartésien. L'union disjointe, encore appelée « somme disjointe » ou « somme cartésienne », de deux ensembles A et B est ainsi définie par : Exemples Soient A la paire {1, 2} et B l'ensemble à trois éléments {2, 3, 4}. Leur réunion (ordinaire) n'a que quatre éléments car ces deux ensembles ne sont pas disjoints. Pour construire leur union disjointe, on commence par les « numéroter » par deux « indices » distincts arbitraires a et b : on pose I = {a, b}, E = A et E = B. Puis on prend la réunion de deux « copies » de A et B qui, elles, sont disjointes : {a}×A et {b}×B. La réunion disjointe de (E) est la partiede {a, b}×{1, 2, 3, 4}. Elle a 2 + 3 = 5 éléments. De même, l'union disjointe de la paire {1, 2} avec elle-même est (en choisissant arbitrairement deux indices distincts, par exemple cette fois : 0 et 1) : La somme disjointe peut se généraliser à plus de deux ensembles. Par exemple, pour trois ensembles quelconques A, B et C: On peut définir plus généralement la somme disjointe de n ensembles quelconques : On peut également généraliser cette notion à des ensembles quelconques (non nécessairement finis) d'indices, et former par exemple des unions disjointes dénombrables.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
MATH-410: Riemann surfaces
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
Séances de cours associées (24)
Introduction aux catégories: Produits et coproduits
Présente la théorie des catégories en généralisant le produit cartésien et l'union disjointe des ensembles à n'importe quelle catégorie.
Open Mapping Théorème
Explique le théorème de cartographie ouverte pour les cartes holomorphes entre les surfaces de Riemann.
Les bonnes actions et les quotients
Couvre les actions correctes des groupes sur les surfaces de Riemann et introduit des courbes algébriques via des racines carrées.
Afficher plus
Publications associées (3)

Families with no s pairwise disjoint sets

Andrei Kupavskii

For integers n >= s >= 2 let e (n, s) denote the maximum of vertical bar F vertical bar, where F is a family of subsets of an n- element set and F contains no s pairwise disjoint members. Half a century ago, solving a conjecture of Erd. os, Kleitman determ ...
Wiley2017

Decision Procedures for Program Synthesis and Verification

Ruzica Piskac

Decision procedures are widely used in software development and verification. The goal of this dissertation is to increase the scope of properties that can be verified using decision procedures. To achieve this goal, we identify three improvements over the ...
EPFL2011

Tangencies between families of disjoint regions in the plane

János Pach

Let C be a family of n convex bodies in the plane, which can be decomposed into k subfamilies of pairwise disjoint sets. It is shown that the number of tangencies between the members of C is at most O(kn), and that this bound cannot be improved. If we only ...
2010
Concepts associés (11)
Produit cartésien
vignette|Illustration d'un produit cartésien A x B où A={x,y,z} et B={1,2,3}. Cet article fait référence au concept mathématique sur les ensembles. Pour les graphes, voir produit cartésien de graphes. En mathématiques, le produit cartésien de deux ensembles X et Y, appelé également ensemble-produit, est l'ensemble de tous les couples dont la première composante appartient à X et la seconde à Y. On généralise facilement cette notion, valable pour deux ensembles, à celle de produit cartésien fini, qui est un ensemble de n-uplets dont les composantes appartiennent à n ensembles.
Produit (catégorie)
Dans une catégorie, le produit d'une famille d'objets est sa limite, lorsqu'elle existe. Il est donc caractérisé par une propriété universelle ou de manière équivalente comme foncteur représentable. Soit une catégorie et une famille d'objets de . On cherche un couple , où X soit un objet de et une famille de morphismes , tel que pour tout objet Y de et pour toute famille de morphismes , il existe un unique morphisme tel que pour tout indice i, on ait . Si un tel couple existe, on dit que c'est un produit des .
Matroïde
En mathématiques, et plus particulièrement en combinatoire, un matroïde est une structure introduite comme un cadre général pour le concept d'indépendance linéaire. Elle est donc naturellement liée à l'algèbre linéaire (déjà au niveau du vocabulaire : indépendant, base, rang), mais aussi à la théorie des graphes (circuit, cycle), à l'algorithmique (algorithme glouton), et à la géométrie (pour diverses questions liées à la représentation). La notion a été introduite en 1935 par Whitney. Le mot matroïde provient du mot matrice.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.