En mathématiques, la réunion disjointe est une opération ensembliste. Contrairement à l'union usuelle, le cardinal d'une union disjointe d'ensembles est toujours égal à la somme de leurs cardinaux. L'union disjointe d'une famille d'ensembles correspond à leur somme en théorie des catégories, c'est pourquoi on l'appelle aussi somme disjointe. C’est une opération fréquente en topologie et en informatique théorique.
Dans une réunion A∪B de deux ensembles, l'origine des éléments y figurant est perdue et les éléments de l'intersection ne sont comptés qu'une seule fois. Dans certaines situations, on désire conserver cette information et prendre en compte deux fois les éléments de l'intersection. Pour cela, on réunit non pas directement A et B, mais deux ensembles disjoints, copies de A et B de la forme { α } × A et { β } × B , où α et β sont deux symboles quelconques distincts servant à identifier les ensembles A et B (par exemple 0 et 1) et × désigne le produit cartésien.
L'union disjointe, encore appelée « somme disjointe » ou « somme cartésienne », de deux ensembles A et B est ainsi définie par :
Exemples
Soient A la paire {1, 2} et B l'ensemble à trois éléments {2, 3, 4}. Leur réunion (ordinaire) n'a que quatre éléments car ces deux ensembles ne sont pas disjoints. Pour construire leur union disjointe, on commence par les « numéroter » par deux « indices » distincts arbitraires a et b : on pose I = {a, b}, E = A et E = B. Puis on prend la réunion de deux « copies » de A et B qui, elles, sont disjointes : {a}×A et {b}×B. La réunion disjointe de (E) est la partiede {a, b}×{1, 2, 3, 4}. Elle a 2 + 3 = 5 éléments.
De même, l'union disjointe de la paire {1, 2} avec elle-même est (en choisissant arbitrairement deux indices distincts, par exemple cette fois : 0 et 1) :
La somme disjointe peut se généraliser à plus de deux ensembles. Par exemple, pour trois ensembles quelconques A, B et C:
On peut définir plus généralement la somme disjointe de n ensembles quelconques :
On peut également généraliser cette notion à des ensembles quelconques (non nécessairement finis) d'indices, et former par exemple des unions disjointes dénombrables.