Concept

Categorical proposition

In logic, a categorical proposition, or categorical statement, is a proposition that asserts or denies that all or some of the members of one category (the subject term) are included in another (the predicate term). The study of arguments using categorical statements (i.e., syllogisms) forms an important branch of deductive reasoning that began with the Ancient Greeks. The Ancient Greeks such as Aristotle identified four primary distinct types of categorical proposition and gave them standard forms (now often called A, E, I, and O). If, abstractly, the subject category is named S and the predicate category is named P, the four standard forms are: All S are P. (A form, ) No S are P. (E form, ) Some S are P. (I form, ) Some S are not P. (O form, ) Surprisingly, a large number of sentences may be translated into one of these canonical forms while retaining all or most of the original meaning of the sentence. Greek investigations resulted in the so-called square of opposition, which codifies the logical relations among the different forms; for example, that an A-statement is contradictory to an O-statement; that is to say, for example, if one believes "All apples are red fruits," one cannot simultaneously believe that "Some apples are not red fruits." Thus the relationships of the square of opposition may allow immediate inference, whereby the truth or falsity of one of the forms may follow directly from the truth or falsity of a statement in another form. Modern understanding of categorical propositions (originating with the mid-19th century work of George Boole) requires one to consider if the subject category may be empty. If so, this is called the hypothetical viewpoint, in opposition to the existential viewpoint which requires the subject category to have at least one member. The existential viewpoint is a stronger stance than the hypothetical and, when it is appropriate to take, it allows one to deduce more results than otherwise could be made.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (4)
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
MATH-323: Topology III - Homology
Homology is one of the most important tools to study topological spaces and it plays an important role in many fields of mathematics. The aim of this course is to introduce this notion, understand its
MATH-207(d): Analysis IV
The course studies the fundamental concepts of complex analysis and Laplace analysis with a view to their use to solve multidisciplinary scientific engineering problems.
Afficher plus
Séances de cours associées (30)
Théorème de la courbe de Jordan
Couvre la preuve du théorème de la courbe de Jordan et les propriétés des sphères incorporées.
Preuves : Logique, Mathématiques et Algorithmes
Explore les concepts, les techniques et les applications de la preuve dans la logique, les mathématiques et les algorithmes.
Introduction aux preuves
Présente des preuves informelles, explore les applications pratiques et explique les preuves de théorème en utilisant des méthodes directes et indirectes.
Afficher plus
Publications associées (3)

An Ink–and–Paper Automaton: The Conceptual Mechanization of Cognition and the Practical Automation of Reasoning in Leibniz’s De Affectibus (1679)

Simon François Dumas Primbault

On ten loose handwritten folios dating back from April 1679, Leibniz gradually devised, in the course of three days, a full-blown theory of thought that nonetheless remained unpublished and still has received little attention from scholars. Conceiving of a ...
2020

Turnpike and dissipativity properties in dynamic real-time optimization and economic MPC

Dominique Bonvin, Colin Neil Jones, Timm Faulwasser, Milan Korda

We investigate the turnpike and dissipativity properties of continuous-time optimal control problems. These properties play a key role in the analysis and design of schemes for dynamic real-time optimization and economic model predictive control. We show i ...
2014

Aligning Value and Implementation in Service Design: A Systemic Approach

Gil Regev, Alain Wegmann, Arash Golnam, Philippe Laprade, Julien Ramboz

The promise of service design is to enable a service supplier to prosper by delivering continuous value to customers. This prosperity is of strategic value to the service supplier. There is value in a service for both the service supplier and its service c ...
2012
Concepts associés (15)
Inverse (logic)
In logic, an inverse is a type of conditional sentence which is an immediate inference made from another conditional sentence. More specifically, given a conditional sentence of the form , the inverse refers to the sentence . Since an inverse is the contrapositive of the converse, inverse and converse are logically equivalent to each other. For example, substituting propositions in natural language for logical variables, the inverse of the following conditional proposition "If it's raining, then Sam will meet Jack at the movies.
Obversion
In traditional logic, obversion is a "type of immediate inference in which from a given proposition another proposition is inferred whose subject is the same as the original subject, whose predicate is the contradictory of the original predicate, and whose quality is affirmative if the original proposition's quality was negative and vice versa". The quality of the inferred categorical proposition is changed but the truth value is the same to the original proposition.
Logique
La logique — du grec , qui est un terme dérivé de signifiant à la fois « raison », « langage » et « raisonnement » — est, dans une première approche, l'étude de l'inférence, c'est-à-dire des règles formelles que doit respecter toute argumentation correcte. Le terme aurait été utilisé pour la première fois par Xénocrate. La logique antique se décompose d'abord en dialectique et rhétorique. Elle est depuis l'Antiquité l'une des grandes disciplines de la philosophie, avec l'éthique (philosophie morale) et la physique (science de la nature).
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.