A transducer is a device that converts energy from one form to another. Usually a transducer converts a signal in one form of energy to a signal in another.
Transducers are often employed at the boundaries of automation, measurement, and control systems, where electrical signals are converted to and from other physical quantities (energy, force, torque, light, motion, position, etc.). The process of converting one form of energy to another is known as transduction.
Mechanical transducers, so-called as they convert physical quantities into mechanical outputs or vice versa;
Electrical transducers however convert physical quantities into electrical outputs or signals. Examples of these are:
a thermocouple that changes temperature differences into a small voltage;
a linear variable differential transformer (LVDT), used to measure displacement (position) changes by means of electrical signals.
Transducers can be categorized by which direction information passes through them:
A sensor is a transducer that receives and responds to a signal or stimulus from a physical system. It produces a signal, which represents information about the system, which is used by some type of telemetry, information or control system.
An actuator is a device that is responsible for moving or controlling a mechanism or system. It is controlled by a signal from a control system or manual control. It is operated by a source of energy, which can be mechanical force, electrical current, hydraulic fluid pressure, or pneumatic pressure, and converts that energy into motion. An actuator is the mechanism by which a control system acts upon an environment. The control system can be simple (a fixed mechanical or electrical system), software-based (e.g. a printer driver, robot control system), a human, or any other input.
Bidirectional transducers can convert physical phenomena to electrical signals and electrical signals into physical phenomena.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le TP de physiologie introduit les approches expérimentales du domaine biomédical, avec les montages de mesure, les capteurs, le conditionnement des signaux, l'acquisition et traitement de données.
Le
Le TP de physiologie introduit les approches expérimentales du domaine biomédical, avec les montages de mesure, les capteurs, le conditionnement des signaux, l'acquisition et traitement de données.
Le
L'objectif de ce cours est d'introduire les systèmes et outils liés à la conversion d'énergie, en se référant au contexte particulier de la production d'énergie électrique, qu'elle soit conventionnell
Radio is the technology of signaling and communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3 hertz (Hz) and 3,000 gigahertz (GHz). They are generated by an electronic device called a transmitter connected to an antenna which radiates the waves, and received by another antenna connected to a radio receiver. Radio is widely used in modern technology, in radio communication, radar, radio navigation, remote control, remote sensing, and other applications.
Piezoelectricity (ˌpiːzoʊ-,_ˌpiːtsoʊ-,_paɪˌiːzoʊ-, piˌeɪzoʊ-,_piˌeɪtsoʊ-) is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in response to applied mechanical stress. The word piezoelectricity means electricity resulting from pressure and latent heat. It is derived (an ancient source of electric current). The piezoelectric effect results from the linear electromechanical interaction between the mechanical and electrical states in crystalline materials with no inversion symmetry.
In radio communications, a radio receiver, also known as a receiver, a wireless, or simply a radio, is an electronic device that receives radio waves and converts the information carried by them to a usable form. It is used with an antenna. The antenna intercepts radio waves (electromagnetic waves of radio frequency) and converts them to tiny alternating currents which are applied to the receiver, and the receiver extracts the desired information.
The unique mechanical and electrical properties of graphene make it an exciting material for nanoelectromechanical systems (NEMS). NEMS resonators with graphene springs facilitate studies of graphene's fundamental material characteristics and thus enable i ...
An ultrasound inspection training system comprising a test object (1), an ultrasound producing device (3) configured to generate ultrasonic signals in the test object and read ultrasonic response signals emitted from the test object, a property altering de ...
The SALUTE project aims at evaluating performance of electroacoustic metasurface, employing a surface array of controlled electroacoustic actuators, for smart acoustic lining under grazing turbulent flow to be used in UHBR Technologies Engines. Theoretical ...
Society of Photo-Optical Instrumentation Engineers (SPIE)2023