A Hall effect sensor (or simply Hall sensor) is a type of sensor which detects the presence and magnitude of a magnetic field using the Hall effect. The output voltage of a Hall sensor is directly proportional to the strength of the field. It is named for the American physicist Edwin Hall.
Hall sensors are used for proximity sensing, positioning, speed detection, and current sensing applications. Frequently, a Hall sensor is combined with threshold detection to act as a binary switch. Commonly seen in industrial applications such as the pictured pneumatic cylinder, they are also used in consumer equipment; for example, some computer printers use them to detect missing paper and open covers. Some 3D printers use them to measure filament thickness.
Hall sensors are commonly used to time the speed of wheels and shafts, such as for internal combustion engine ignition timing, tachometers and anti-lock braking systems. They are used in brushless DC electric motors to detect the position of the permanent magnet. In the pictured wheel with two equally spaced magnets, the voltage from the sensor peaks twice for each revolution. This arrangement is commonly used to regulate the speed of disk drives.
In a Hall sensor, a current is applied to a thin strip of metal. In the presence of a magnetic field perpendicular to the direction of the current, the charge carriers are deflected by the Lorentz force, producing a difference in electric potential (voltage) between the two sides of the strip. This voltage difference (the Hall voltage) is proportional to the strength of the magnetic field.
Hall effect sensors respond to static (non-changing) magnetic fields. This is a key difference from inductive sensors, which respond only to changes in fields.
Hall sensors are capable of measuring a wide range of magnetic fields, and are sensitive to both the magnitude and orientation of the field. When used as electronic switches, they are less prone to mechanical failure, since there is no wear on physical parts.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course provides the basis to understand the physics, the key performance, and the research and industrial applications of magnetic sensors and actuators. Together with a detailed introduction to m
An electronic component is any basic discrete electronic device or physical entity part of an electronic system used to affect electrons or their associated fields. Electronic components are mostly industrial products, available in a singular form and are not to be confused with electrical elements, which are conceptual abstractions representing idealized electronic components and elements. Electronic components have a number of electrical terminals or leads.
The Hall effect is the production of a potential difference (the Hall voltage) across an electrical conductor that is transverse to an electric current in the conductor and to an applied magnetic field perpendicular to the current. It was discovered by Edwin Hall in 1879. The Hall coefficient is defined as the ratio of the induced electric field to the product of the current density and the applied magnetic field. It is a characteristic of the material from which the conductor is made, since its value depends on the type, number, and properties of the charge carriers that constitute the current.
An electric motor is an electrical machine that converts electrical energy into mechanical energy. Most electric motors operate through the interaction between the motor's magnetic field and electric current in a wire winding to generate force in the form of torque applied on the motor's shaft. An electric generator is mechanically identical to an electric motor, but operates with a reversed flow of power, converting mechanical energy into electrical energy.
Multilayered cuprates possess not only the highest superconducting temperature transition but also offer a unique platform to study disorder-free CuO2 planes and the interplay between competing orders with superconductivity. Here, we study the underdoped t ...
As one of the three most popular sports in the Summer Olympics, competitive swimming has always been an attractive subject of study for sports scientists. The intricate nature of the swimmer's movements and the variety of techniques have led coaches to req ...
Transient electronics have emerged as a promising class of devices, capable of breaking down without harmful side effects to their environment. They have tremendous potential as bioresorbable electronics for temporary applications in the human body, and as ...