Alpha waves, or the alpha rhythm, are neural oscillations in the frequency range of 8–12 Hz likely originating from the synchronous and coherent (in phase or constructive) electrical activity of thalamic pacemaker cells in humans. Historically, they are also called "Berger's waves" after Hans Berger, who first described them when he invented the EEG in 1924.
Alpha waves are one type of brain waves detected by electrophysiological and closely related methods, such as by electroencephalography (EEG) or magnetoencephalography (MEG), and can be quantified using quantitative electroencephalography (qEEG). They can be predominantly recorded from the occipital lobes during wakeful relaxation with closed eyes and were the earliest brain rhythm recorded in humans. Alpha waves are reduced with open eyes and sleep, while they are enhanced during drowsiness. Occipital alpha waves during periods of eyes closed are the strongest EEG brain signals.
Historically, alpha waves were thought to represent the activity of the visual cortex in an idle state. More recently, research suggests that they inhibit areas of the cortex not in use, or alternatively that they play an active role in network coordination and communication. Whether they are inhibitory or play an active role in attention links to their direction of propagation, with top-down rearward waves being inhibitory, and forward bottom-up ones aiding visual attentional processes.
An alpha-like variant called a mu wave can be found over the primary motor cortex.
Some researchers posit that there are at least two forms of alpha waves, which may have different functions in the wake-sleep cycle.
Alpha waves are present at different stages of the wake-sleep cycle. The most widely researched is during the relaxed mental state, where the subject is at rest with eyes closed, but is not tired or asleep. This alpha activity is centered in the occipital lobe, although there has been speculation that it has a thalamic origin. This wave begins appearing at around four months, and is initially a frequency of 4 waves per second.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Electroencephalography (EEG) is a method to record an electrogram of the spontaneous electrical activity of the brain. The biosignals detected by EEG have been shown to represent the postsynaptic potentials of pyramidal neurons in the neocortex and allocortex. It is typically non-invasive, with the EEG electrodes placed along the scalp (commonly called "scalp EEG") using the International 10–20 system, or variations of it. Electrocorticography, involving surgical placement of electrodes, is sometimes called "intracranial EEG".
Neural oscillations, or brainwaves, are rhythmic or repetitive patterns of neural activity in the central nervous system. Neural tissue can generate oscillatory activity in many ways, driven either by mechanisms within individual neurons or by interactions between neurons. In individual neurons, oscillations can appear either as oscillations in membrane potential or as rhythmic patterns of action potentials, which then produce oscillatory activation of post-synaptic neurons.
Biofeedback is the process of gaining greater awareness of many physiological functions of one's own body by using electronic or other instruments, and with a goal of being able to manipulate the body's systems at will. Humans conduct biofeedback naturally all the time, at varied levels of consciousness and intentionality. Biofeedback and the biofeedback loop can also be thought of as self-regulation. Some of the processes that can be controlled include brainwaves, muscle tone, skin conductance, heart rate and pain perception.
The main goal of this course is to give the student a solid introduction into approaches, methods, and tools for brain network analysis. The student will learn about principles of network science and
Fundamental principles and methods used for physiological signal conditioning. Electrode, optical, resistive, capacitive, inductive, and piezoelectric sensor techniques used to detect and convert phys
This multidisciplinary course presents, from both engineering and medical perspectives, the state-of-the-art, applications and impact of wearable and implantable technologies, with focus on cardiovasc
The growing popularity of virtual reality systems has led to a renewed interest in understanding the neurophysiological correlates of the illusion of self-motion (vection), a phenomenon that can be both intentionally induced or avoided in such systems, dep ...
The brain's functional networks can be assessed using imaging techniques like functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). Recent studies have suggested a link between the dynamic functional connectivity (dFC) captured by ...
SPRINGER INTERNATIONAL PUBLISHING AG2023
Traditionally, studies in schizophrenia research employ a single experimental paradigm. The results typically demonstrate a significant difference between patients and controls. Subsequent studies aim to describe the underlying abnormal mechanism at the ge ...