Concept

Plurisubharmonic function

In mathematics, plurisubharmonic functions (sometimes abbreviated as psh, plsh, or plush functions) form an important class of functions used in complex analysis. On a Kähler manifold, plurisubharmonic functions form a subset of the subharmonic functions. However, unlike subharmonic functions (which are defined on a Riemannian manifold) plurisubharmonic functions can be defined in full generality on complex analytic spaces. A function with domain is called plurisubharmonic if it is upper semi-continuous, and for every complex line with the function is a subharmonic function on the set In full generality, the notion can be defined on an arbitrary complex manifold or even a complex analytic space as follows. An upper semi-continuous function is said to be plurisubharmonic if and only if for any holomorphic map the function is subharmonic, where denotes the unit disk. If is of (differentiability) class , then is plurisubharmonic if and only if the hermitian matrix , called Levi matrix, with entries is positive semidefinite. Equivalently, a -function f is plurisubharmonic if and only if is a positive (1,1)-form. Relation to Kähler manifold: On n-dimensional complex Euclidean space , is plurisubharmonic. In fact, is equal to the standard Kähler form on up to constant multiples. More generally, if satisfies for some Kähler form , then is plurisubharmonic, which is called Kähler potential. These can be readily generated by applying the ddbar lemma to Kähler forms on a Kähler manifold. Relation to Dirac Delta: On 1-dimensional complex Euclidean space , is plurisubharmonic. If is a C∞-class function with compact support, then Cauchy integral formula says which can be modified to It is nothing but Dirac measure at the origin 0 . More Examples If is an analytic function on an open set, then is plurisubharmonic on that open set. Convex functions are plurisubharmonic If is a Domain of Holomorphy then is plurisubharmonic Harmonic functions are not necessarily plurisubharmonic Plurisubharmonic functions were defined in 1942 by Kiyoshi Oka and Pierre Lelong.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.