An artificial heart is a device that replaces the heart. Artificial hearts are typically used to bridge the time to heart transplantation, or to permanently replace the heart in the case that a heart transplant (from a deceased human or, experimentally, from a deceased genetically engineered pig) is impossible. Although other similar inventions preceded it from the late 1940s, the first artificial heart to be successfully implanted in a human was the Jarvik-7 in 1982, designed by a team including Willem Johan Kolff, William DeVries and Robert Jarvik.
An artificial heart is distinct from a ventricular assist device (VAD; for either one or both of the ventricles, the heart's lower chambers), which can be a permanent solution also, or the intra-aortic balloon pump – both devices are designed to support a failing heart. It is also distinct from a cardiopulmonary bypass machine, which is an external device used to provide the functions of both the heart and lungs, used only for a few hours at a time, most commonly during cardiac surgery. It is also distinct from a ventilator, used to support failing lungs, or the extracorporeal membrane oxygenation (ECMO), which is used to support those with both inadequate heart and lung function for up to days or weeks, unlike the bypass machine.
A synthetic replacement for a heart remains a long-sought "holy grail" of modern medicine. The obvious benefit of a functional artificial heart would be to lower the need for heart transplants because the demand for organs always greatly exceeds supply.
Although the heart is conceptually a pump, it embodies subtleties that defy straightforward emulation with synthetic materials and power supplies. Consequences of these issues include severe foreign-body rejection and external batteries that limit mobility. These complications limited the lifespan of early human recipients from hours to days.
The first artificial heart was made by the Soviet scientist Vladimir Demikhov in 1938. It was implanted in a dog.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le but est de connaitre et comprendre le fonctionnement des systèmes cardiovasculaire, urinaire, respiratoire, digestif, ainsi que du métabolisme de base et sa régulation afin de déveloper une réflect
Ce cours est une préparation intensive à l'examen d'entrée en 3ème année de Médecine. Les matières enseignées sont la morphologie macroscopique (anatomie) , microscopique (histologie) de la tête, du c
Introduction to materials structure including crystallography, the structure of amorphous materials such as glasses, polymers and biomaterials as well as the basics of characterization techniques.
A ventricular assist device (VAD) is an electromechanical device for assisting cardiac circulation, which is used either to partially or to completely replace the function of a failing heart. The function of a VAD differs from that of an artificial cardiac pacemaker in that a VAD pumps blood, whereas a pacemaker delivers electrical impulses to the heart muscle. Some VADs are for short-term use, typically for patients recovering from myocardial infarction (heart attack) and for patients recovering from cardiac surgery; some are for long-term use (months to years to perpetuity), typically for patients with advanced heart failure.
Cardiac surgery, or cardiovascular surgery, is surgery on the heart or great vessels performed by cardiac surgeons. It is often used to treat complications of ischemic heart disease (for example, with coronary artery bypass grafting); to correct congenital heart disease; or to treat valvular heart disease from various causes, including endocarditis, rheumatic heart disease, and atherosclerosis. It also includes heart transplantation.
In questo corso, imparerai a utilizzare il robot Thymio e ad usarlo come strumento didattico per introdurre nella tua classe i principali concetti appartenenti al mondo digitale e al pensiero computaz
In questo corso, imparerai a utilizzare il robot Thymio e ad usarlo come strumento didattico per introdurre nella tua classe i principali concetti appartenenti al mondo digitale e al pensiero computaz
Related units (6)
Related lectures (37)
, , ,
Background and Objective: Computational models of the cardiovascular system allow for a detailed and quantitative investigation of both physiological and pathological conditions, thanks to their ability to combine clinical-possibly patient-specific-data wi ...
Ame Publishing Company2024
, ,
Cardiac digital twins provide a physics and physiology informed framework to deliver personalized medicine. However, high-fidelity multi-scale cardiac models remain a barrier to adoption due to their extensive computational costs. Artificial Intelligence-b ...
Nature Portfolio2024
, ,
Over the past two decades, protein S-acylation (often referred to as S-palmitoylation) has emerged as an important regulator of vital signalling pathways. S-Acylation is a reversible post-translational modification that involves the attachment of a fatty a ...