Summary
In the context of the physical and mathematical theory of percolation, a percolation transition is characterized by a set of universal critical exponents, which describe the fractal properties of the percolating medium at large scales and sufficiently close to the transition. The exponents are universal in the sense that they only depend on the type of percolation model and on the space dimension. They are expected to not depend on microscopic details such as the lattice structure, or whether site or bond percolation is considered. This article deals with the critical exponents of random percolation. Percolating systems have a parameter which controls the occupancy of sites or bonds in the system. At a critical value , the mean cluster size goes to infinity and the percolation transition takes place. As one approaches , various quantities either diverge or go to a constant value by a power law in , and the exponent of that power law is the critical exponent. While the exponent of that power law is generally the same on both sides of the threshold, the coefficient or "amplitude" is generally different, leading to a universal amplitude ratio. Thermodynamic or configurational systems near a critical point or a continuous phase transition become fractal, and the behavior of many quantities in such circumstances is described by universal critical exponents. Percolation theory is a particularly simple and fundamental model in statistical mechanics which has a critical point, and a great deal of work has been done in finding its critical exponents, both theoretically (limited to two dimensions) and numerically. Critical exponents exist for a variety of observables, but most of them are linked to each other by exponent (or scaling) relations. Only a few of them are independent, and the choice of the fundamental exponents depends on the focus of the study at hand. One choice is the set motivated by the cluster size distribution, another choice is motivated by the structure of the infinite cluster.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (6)
PHYS-739: Conformal Field theory and Gravity
This course is an introduction to the non-perturbative bootstrap approach to Conformal Field Theory and to the Gauge/Gravity duality, emphasizing the fruitful interplay between these two ideas.
PHYS-435: Statistical physics III
This course introduces statistical field theory, and uses concepts related to phase transitions to discuss a variety of complex systems (random walks and polymers, disordered systems, combinatorial o
COM-512: Networks out of control
The goal of this class is to acquire mathematical tools and engineering insight about networks whose structure is random, as well as learning and control techniques applicable to such network data.
Show more