An interglacial period (or alternatively interglacial, interglaciation) is a geological interval of warmer global average temperature lasting thousands of years that separates consecutive glacial periods within an ice age. The current Holocene interglacial began at the end of the Pleistocene, about 11,700 years ago.
During the 2.5 million years of the Pleistocene, numerous glacials, or significant advances of continental ice sheets, in North America and Europe, occurred at intervals of approximately 40,000 to 100,000 years. The long glacial periods were separated by more temperate and shorter interglacials.
During interglacials, such as the present one, the climate warms and the tundra recedes polewards following the ice sheets. Forests return to areas that once supported tundra vegetation. Interglacials are identified on land or in shallow epicontinental seas by their paleontology. Floral and faunal remains of species pointing to temperate climate and indicating a specific age are used to identify particular interglacials. Commonly used are mammalian and molluscan species, pollen and plant macro-remains (seeds and fruits). However, many other fossil remains may be helpful: insects, ostracods, foraminifera, diatoms, etc. Recently, ice cores and ocean sediment cores provide more quantitative and accurately-dated evidence for temperatures and total ice volumes.
Interglacials and glacials coincide with cyclic changes in Earth's orbit. Three orbital variations contribute to interglacials. The first is a change in Earth's orbit around the Sun, or eccentricity. The second is a shift in the tilt of Earth's axis, or obliquity. The third is the wobbling motion of Earth's axis, or precession.
In the Southern Hemisphere, warmer summers occur when the lower-half of Earth is tilted toward the Sun and the planet is nearest the Sun in its elliptical orbit. Cooler summers occur when Earth is farthest from the Sun during the Southern Hemisphere summer. Such effects are more pronounced when the eccentricity of the orbit is large.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course equips students with a comprehensive scientific understanding of climate change covering a wide range of topics from physical principles, historical climate change, greenhouse gas emissions
A glacial period (alternatively glacial or glaciation) is an interval of time (thousands of years) within an ice age that is marked by colder temperatures and glacier advances. Interglacials, on the other hand, are periods of warmer climate between glacial periods. The Last Glacial Period ended about 15,000 years ago. The Holocene is the current interglacial. A time with no glaciers on Earth is considered a greenhouse climate state.
The Flandrian interglacial or stage is the regional name given by geologists and archaeologists in the British Isles to the period from around 12,000 years ago, at the end of the last glacial period to the present day. As such, it is in practice identical in span to the Holocene (the present geological epoch). The Flandrian began as the relatively short-lived Younger Dryas climate downturn came to an end. This formed the last gasp of the Devensian glaciation, the final stage of the Pleistocene epoch.
Stadials and interstadials are phases dividing the Quaternary period, or the last 2.6 million years. Stadials are periods of colder climate, and interstadials are periods of warmer climate. Each Quaternary climate phase is associated with a Marine Isotope Stage (MIS) number, which describes the alternation between warmer and cooler temperatures, as measured by oxygen isotope data. Stadials have even MIS numbers, and interstadials have odd MIS numbers. The current Holocene interstadial is MIS 1, and the Last Glacial Maximum stadial is MIS 2.
Explores paleoclimate through ice cores, isotopes, and temperature reconstructions, highlighting the influence of Earth's orbit and greenhouse gases on climate patterns.
The Antarctic Vostok ice core provided compelling evidence of the nature of climate, and of climate feedbacks, over the past 420,000 years. Marine records suggest that the amplitude of climate variability was smaller before that time, but such records are ...
Our understanding of the response of reef-building corals to changes in their physical environment is largely based on laboratory experiments, analysis of long-term field data, and model projections. Experimental data provide unique insights into how organ ...
WILEY2021
, ,
The importance of dust and biomass burning episodes on the atmospheric concentration of water-soluble reactive phosphate (SRP) was determined in the eastern Mediterranean. SRP was measured with a new rapid real-time automated analytical system with a time ...