Gauss's Theorema Egregium (Latin for "Remarkable Theorem") is a major result of differential geometry, proved by Carl Friedrich Gauss in 1827, that concerns the curvature of surfaces. The theorem says that Gaussian curvature can be determined entirely by measuring angles, distances and their rates on a surface, without reference to the particular manner in which the surface is embedded in the ambient 3-dimensional Euclidean space. In other words, the Gaussian curvature of a surface does not change if one bends the surface without stretching it. Thus the Gaussian curvature is an intrinsic invariant of a surface.
Gauss presented the theorem in this manner (translated from Latin):
Thus the formula of the preceding article leads itself to the remarkable Theorem. If a curved surface is developed upon any other surface whatever, the measure of curvature in each point remains unchanged.
The theorem is "remarkable" because the starting definition of Gaussian curvature makes direct use of position of the surface in space. So it is quite surprising that the result does not depend on its embedding in spite of all bending and twisting deformations undergone.
In modern mathematical terminology, the theorem may be stated as follows:
The Gaussian curvature of a surface is invariant under local isometry.
A sphere of radius R has constant Gaussian curvature which is equal to 1/R2. At the same time, a plane has zero Gaussian curvature. As a corollary of Theorema Egregium, a piece of paper cannot be bent onto a sphere without crumpling. Conversely, the surface of a sphere cannot be unfolded onto a flat plane without distorting the distances. If one were to step on an empty egg shell, its edges have to split in expansion before being flattened. Mathematically, a sphere and a plane are not isometric, even locally. This fact is significant for cartography: it implies that no planar (flat) map of Earth can be perfect, even for a portion of the Earth's surface. Thus every cartographic projection necessarily distorts at least some distances.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In differential geometry, the Gaussian curvature or Gauss curvature Κ of a smooth surface in three-dimensional space at a point is the product of the principal curvatures, κ1 and κ2, at the given point: The Gaussian radius of curvature is the reciprocal of Κ. For example, a sphere of radius r has Gaussian curvature 1/r2 everywhere, and a flat plane and a cylinder have Gaussian curvature zero everywhere. The Gaussian curvature can also be negative, as in the case of a hyperboloid or the inside of a torus.
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space. One-dimensional manifolds include lines and circles, but not lemniscates. Two-dimensional manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, and also the Klein bottle and real projective plane.
In differential geometry, the two principal curvatures at a given point of a surface are the maximum and minimum values of the curvature as expressed by the eigenvalues of the shape operator at that point. They measure how the surface bends by different amounts in different directions at that point. At each point p of a differentiable surface in 3-dimensional Euclidean space one may choose a unit normal vector. A normal plane at p is one that contains the normal vector, and will therefore also contain a unique direction tangent to the surface and cut the surface in a plane curve, called normal section.
Delves into the intricate geometry of Gothic architecture, exploring surfaces with variable and constant curvature and the historical evolution of vaults.
The visual appearance of any colorized object is usually determined by the spectral absorption of either pigments or dyes. One can however also colorize objects with structural colors that typically have an iridescent appearance, as seen on many beetles. T ...
The distributed remote source coding (the so-called CEO) problem is studied in the case where the underlying source, not necessarily Gaussian, has finite differential entropy and the observation noise is Gaussian. The main result is a new lower bound for t ...
In the paper we deal with shells with non-zero Gaussian curvature. We derive sharp Korn's first (linear geometric rigidity estimate) and second inequalities on that kind of shell for zero or periodic Dirichlet, Neumann, and Robin type boundary conditions. ...