In algebraic geometry, an algebraic variety or scheme X is normal if it is normal at every point, meaning that the local ring at the point is an integrally closed domain. An affine variety X (understood to be irreducible) is normal if and only if the ring O(X) of regular functions on X is an integrally closed domain. A variety X over a field is normal if and only if every finite birational morphism from any variety Y to X is an isomorphism.
Normal varieties were introduced by .
A morphism of varieties is finite if the inverse image of every point is finite and the morphism is proper. A morphism of varieties
is birational if it restricts to an isomorphism between dense open subsets. So, for example, the cuspidal cubic curve X in the affine plane A2 defined by x2 = y3 is not normal, because there is a finite birational morphism A1 → X
(namely, t maps to (t3, t2)) which is not an isomorphism. By contrast, the affine line A1 is normal: it cannot be simplified any further by finite birational morphisms.
A normal complex variety X has the property, when viewed as a stratified space using the classical topology, that every link is connected. Equivalently, every complex point x has arbitrarily small neighborhoods U such that U minus
the singular set of X is connected. For example, it follows that the nodal cubic curve X in the figure, defined by x2 = y2(y + 1), is not normal. This also follows from the definition of normality, since there is a finite birational morphism from A1 to X which is not an isomorphism; it sends two points of A1 to the same point in X.
More generally, a scheme X is normal if each of its local rings
OX,x
is an integrally closed domain. That is, each of these rings is an integral domain R, and every ring S with R ⊆ S ⊆ Frac(R) such that S is finitely generated as an R-module is equal to R. (Here Frac(R) denotes the field of fractions of R.) This is a direct translation, in terms of local rings, of the geometric condition that every finite birational morphism to X is an isomorphism.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
We use birational geometry to show that the existence of rational points on proper rationally connected varieties over fields of characteristic 0 is a consequence of the existence of rational points on terminal Fano varieties. We discuss several consequenc ...
The aim of this course is to learn the basics of the modern scheme theoretic language of algebraic geometry.
We further the classification of rational surface singularities. Suppose (S, n, k) is a 3-dimensional strictly Henselian regular local ring of mixed characteristic (0, p > 5). We classify functions f for which S/(f) has an isolated rational singularity at ...
This is a glossary of algebraic geometry. See also glossary of commutative algebra, glossary of classical algebraic geometry, and glossary of ring theory. For the number-theoretic applications, see glossary of arithmetic and Diophantine geometry. For simplicity, a reference to the base scheme is often omitted; i.e., a scheme will be a scheme over some fixed base scheme S and a morphism an S-morphism.
In algebraic geometry, a toric variety or torus embedding is an algebraic variety containing an algebraic torus as an open dense subset, such that the action of the torus on itself extends to the whole variety. Some authors also require it to be normal. Toric varieties form an important and rich class of examples in algebraic geometry, which often provide a testing ground for theorems. The geometry of a toric variety is fully determined by the combinatorics of its associated fan, which often makes computations far more tractable.
In algebraic geometry, a morphism between algebraic varieties is a function between the varieties that is given locally by polynomials. It is also called a regular map. A morphism from an algebraic variety to the affine line is also called a regular function. A regular map whose inverse is also regular is called biregular, and the biregular maps are the isomorphisms of algebraic varieties.
The topic of this thesis is vanishing theorems in positive characteristic. In particular, we use "the covering trick of Ekedahl" to investigate the vanishing of H1(X,OX(−D)) for a big and nef Weil divisor D on a normal projective variety w ...