In the field of mathematics called abstract algebra, a division algebra is, roughly speaking, an algebra over a field in which division, except by zero, is always possible.
Formally, we start with a non-zero algebra D over a field. We call D a division algebra if for any element a in D and any non-zero element b in D there exists precisely one element x in D with a = bx and precisely one element y in D such that a = yb.
For associative algebras, the definition can be simplified as follows: a non-zero associative algebra over a field is a division algebra if and only if it has a multiplicative identity element 1 and every non-zero element a has a multiplicative inverse (i.e. an element x with ax = xa = 1).
The best-known examples of associative division algebras are the finite-dimensional real ones (that is, algebras over the field R of real numbers, which are finite-dimensional as a vector space over the reals). The Frobenius theorem states that up to isomorphism there are three such algebras: the reals themselves (dimension 1), the field of complex numbers (dimension 2), and the quaternions (dimension 4).
Wedderburn's little theorem states that if D is a finite division algebra, then D is a finite field.
Over an algebraically closed field K (for example the complex numbers C), there are no finite-dimensional associative division algebras, except K itself.
Associative division algebras have no nonzero zero divisors. A finite-dimensional unital associative algebra (over any field) is a division algebra if and only if it has no nonzero zero divisors.
Whenever A is an associative unital algebra over the field F and S is a simple module over A, then the endomorphism ring of S is a division algebra over F; every associative division algebra over F arises in this fashion.
The center of an associative division algebra D over the field K is a field containing K. The dimension of such an algebra over its center, if finite, is a perfect square: it is equal to the square of the dimension of a maximal subfield of D over the center.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course is based on Durrett's text book
Probability: Theory and Examples.
It takes the measure theory approach to probability theory, wherein expectations are simply abstract integrals.
In mathematics, an octonion algebra or Cayley algebra over a field F is a composition algebra over F that has dimension 8 over F. In other words, it is a unital non-associative algebra A over F with a non-degenerate quadratic form N (called the norm form) such that for all x and y in A. The most well-known example of an octonion algebra is the classical octonions, which are an octonion algebra over R, the field of real numbers. The split-octonions also form an octonion algebra over R.
Leonard Eugene Dickson (January 22, 1874 – January 17, 1954) was an American mathematician. He was one of the first American researchers in abstract algebra, in particular the theory of finite fields and classical groups, and is also remembered for a three-volume history of number theory, History of the Theory of Numbers. The L. E. Dickson instructorships at the University of Chicago Department of Mathematics are named after him. Dickson considered himself a Texan by virtue of having grown up in Cleburne, where his father was a banker, merchant, and real estate investor.
In mathematics, a noncommutative ring is a ring whose multiplication is not commutative; that is, there exist a and b in the ring such that ab and ba are different. Equivalently, a noncommutative ring is a ring that is not a commutative ring. Noncommutative algebra is the part of ring theory devoted to study of properties of the noncommutative rings, including the properties that apply also to commutative rings. Sometimes the term noncommutative ring is used instead of ring to refer to an unspecified ring which is not necessarily commutative, and hence may be commutative.
Kontsevich and Soibelman reformulated and slightly generalised the topological recursion of [43], seeing it as a quantisation of certain quadratic Lagrangians in T*V for some vector space V. KS topological recursion is a procedure which takes as initial da ...
San Diego2024
In this text, we will show the existence of lattice packings in a family of dimensions by employing division algebras. This construction is a generalization of Venkatesh's lattice packing result Venkatesh (Int Math Res Notices 2013(7): 1628-1642, 2013). In ...
SPRINGER HEIDELBERG2023
We provide a new description of the complex computing the Hochschild homology of an -unitary -algebra as a derived tensor product such that: (1) there is a canonical morphism from it to the complex computing the cyclic homology of that was introduced by Ko ...