Semiconductor consolidation is the trend of semiconductor companies collaborating in order to come to a practical synergy with the goal of being able to operate in a business model that can sustain profitability.
Since the rapid adoption of the modern day chip in the 1960s, most companies involved in producing semiconductors were extremely vertically integrated. Semiconductor companies owned and operated their own fabrication plants and also the processing technologies that facilitated the creation of the chips. Research, design, testing, production, and manufacturing were all kept "in house".
Advances in the semiconductor industry made the market extremely competitive and companies began to use a technology roadmap that helped set goals for the industry. This roadmap came to be known as Moore's Law, a statistical trend seen by Intel's co-founder Gordon Moore in which the number of transistors on an integrated circuit is doubled approximately every 2 years. This increase in transistor numbers meant that chips were getting smaller and faster as time progressed.
As chips continued to get faster, so did the levels of sophistication within the circuitry. Companies were constantly updating machinery to be able to keep up with production demands and overhauls of newer circuits. Companies raced to make transistors smaller in order to pack more of them on the same size silicon and enable faster chips. This practice became known as "shrinkage".
Companies were now in a race against each other and themselves to create the next fastest chip, as all goals were to meet or exceed Moore's Law. With the shrinking of sizes in semiconductors, production became much more intricate. Fabrication machines, which were producing chips at the millimeter level in the 1960s, were now operating in the micrometer and heading into the nanometer scale. , most cutting edge processor makers are working in the 32 nm level and heading into full 22 nm production; sizes comparable to the human DNA strand.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Intro into the relation between physical and structural properties; introduction into different X-Ray techniques; examples of successful technological transfer using X-Ray techniques;
Structural prope
This course explains the origin of optical and electrical properties of semiconductors. The course elaborates how they change when the semiconductors are reduced to sizes of few nanometers. The course
This course introduces advanced fabrication methods enabling the manufacturing of novel micro- and nanosystems (NEMS/MEMS). Both top-down techniques (lithography, stenciling, scanning probes, additive
Rock's law or Moore's second law, named for Arthur Rock or Gordon Moore, says that the cost of a semiconductor chip fabrication plant doubles every four years. As of 2015, the price had already reached about 14 billion US dollars. Rock's law can be seen as the economic flip side to Moore's (first) law – that the number of transistors in a dense integrated circuit doubles every two years.
In the microelectronics industry, a semiconductor fabrication plant (commonly called a fab; sometimes foundry) is a factory for semiconductor device fabrication. Fabs require many expensive devices to function. Estimates put the cost of building a new fab over one billion U.S. dollars with values as high as 3–4billionnotbeinguncommon.TSMCinvested9.3 billion in its Fab15 300 mm wafer manufacturing facility in Taiwan. The same company estimations suggest that their future fab might cost $20 billion.
Fabless manufacturing is the design and sale of hardware devices and semiconductor chips while outsourcing their fabrication (or fab) to a specialized manufacturer called a semiconductor foundry. These foundries are typically, but not exclusively, located in the United States, China, and Taiwan. Fabless companies can benefit from lower capital costs while concentrating their research and development resources on the end market. Some fabless companies and pure play foundries (like TSMC) may offer integrated-circuit design services to third parties.
Covers the process integration in semiconductor fabrication, including twin-well process, isolation methods, threshold voltage adjustment, and silicide formation.
Quantum computation (QC) is one of the most challenging quantum technologies that promise to revolutionize data computation in the long-term by outperforming the classical supercomputers in specific applications. Errors will hamper this quantum revolution ...
With the increase in penetration of power electronic converters in the power systems, a demand for overcurrent/ overloading capability has risen for the fault clearance duration. This article gives an overview of the limiting factors and the recent technol ...
Electronic devices play an irreplaceable role in our lives. With the tightening time to market, exploding demand for computing power, and continuous desire for smaller, faster, less energy-consuming, and lower-cost chips, computer-aided design for electron ...