In geometry, Thales's theorem states that if A, B, and C are distinct points on a circle where the line is a diameter, the angle ∠ ABC is a right angle. Thales's theorem is a special case of the inscribed angle theorem and is mentioned and proved as part of the 31st proposition in the third book of Euclid's Elements. It is generally attributed to Thales of Miletus, but it is sometimes attributed to Pythagoras.
There is nothing extant of the writing of Thales. Work done in ancient Greece tended to be attributed to men of wisdom without respect to all the individuals involved in any particular intellectual constructions; this is true of Pythagoras especially. Attribution did tend to occur at a later time. Reference to Thales was made by Proclus, and by Diogenes Laërtius documenting Pamphila's statement that Thales "was the first to inscribe in a circle a right-angle triangle".
Babylonian mathematicians knew this for special cases before Thales proved it. It is believed that Thales learned that an angle inscribed in a semicircle is a right angle during his travels to Babylon. The theorem is named after Thales because he was said by ancient sources to have been the first to prove the theorem, using his own results that the base angles of an isosceles triangle are equal, and that the sum of angles of a triangle is equal to a straight angle (180°).
Dante's Paradiso (canto 13, lines 101–102) refers to Thales's theorem in the course of a speech.
The following facts are used: the sum of the angles in a triangle is equal to 180° and the base angles of an isosceles triangle are equal.
Since = = , △OBA and △OBC are isosceles triangles, and by the equality of the base angles of an isosceles triangle, ∠ OBC = ∠ OCB and ∠ OBA = ∠ OAB.
Let α = ∠ BAO and β = ∠ OBC. The three internal angles of the ∆ABC triangle are α, (α + β), and β. Since the sum of the angles of a triangle is equal to 180°, we have
Q.E.D.
The theorem may also be proven using trigonometry: Let O = (0, 0), A = (-1, 0), and C = (1, 0). Then B is a point on the unit circle (cos θ, sin θ).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides. The theorem can be written as an equation relating the lengths of the sides a, b and the hypotenuse c, sometimes called the Pythagorean equation: The theorem is named for the Greek philosopher Pythagoras, born around 570 BC.
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a geometer. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts.
In geometry and trigonometry, a right angle is an angle of exactly 90 degrees or /2 radians corresponding to a quarter turn. If a ray is placed so that its endpoint is on a line and the adjacent angles are equal, then they are right angles. The term is a calque of Latin angulus rectus; here rectus means "upright", referring to the vertical perpendicular to a horizontal base line. Closely related and important geometrical concepts are perpendicular lines, meaning lines that form right angles at their point of intersection, and orthogonality, which is the property of forming right angles, usually applied to vectors.
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
We report the discovery of 15 exceptionally luminous 10 less than or similar to z less than or similar to 14 candidate galaxies discovered in the first 0.28 deg(2) of JWST/NIRCam imaging from the COSMOS-Web survey. These sources span rest-frame UV magnitud ...
Iop Publishing Ltd2024
Upcoming wide-field surveys will discover thousands of new strongly lensed quasars which will be monitored with unprecedented cadence by the Legacy Survey of Space and Time (LSST). Many of these quasars will undergo caustic-crossing events over the 10-yr L ...
We study a new population of extremely red objects (EROs) recently discovered by the James Webb Space Telescope (JWST) based on their NIRCam colors F277W - F444W > 1.5 mag. We find 37 EROs in the Cosmic Evolution Early Release Science Survey (CEERS) field ...