Within computer science and operations research, many combinatorial optimization problems are computationally intractable to solve exactly (to optimality). Many such problems do admit fast (polynomial time) approximation algorithms—that is, algorithms that are guaranteed to return an approximately optimal solution given any input. Randomized rounding is a widely used approach for designing and analyzing such approximation algorithms. The basic idea is to use the probabilistic method to convert an optimal solution of a relaxation of the problem into an approximately optimal solution to the original problem. The basic approach has three steps: Formulate the problem to be solved as an integer linear program (ILP). Compute an optimal fractional solution to the linear programming relaxation (LP) of the ILP. Round the fractional solution of the LP to an integer solution of the ILP. (Although the approach is most commonly applied with linear programs, other kinds of relaxations are sometimes used. For example, see Goemans' and Williamson's semidefinite programming-based Max-Cut approximation algorithm.) The challenge in the first step is to choose a suitable integer linear program. Familiarity with linear programming, in particular modelling using linear programs and integer linear programs, is required. For many problems, there is a natural integer linear program that works well, such as in the Set Cover example below. (The integer linear program should have a small integrality gap; indeed randomized rounding is often used to prove bounds on integrality gaps.) In the second step, the optimal fractional solution can typically be computed in polynomial time using any standard linear programming algorithm. In the third step, the fractional solution must be converted into an integer solution (and thus a solution to the original problem). This is called rounding the fractional solution. The resulting integer solution should (provably) have cost not much larger than the cost of the fractional solution.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.