In multilinear algebra, a multivector, sometimes called Clifford number, is an element of the exterior algebra Λ(V) of a vector space V. This algebra is graded, associative and alternating, and consists of linear combinations of simple k-vectors (also known as decomposable k-vectors or k-blades) of the form
where are in V.
A k-vector is such a linear combination that is homogeneous of degree k (all terms are k-blades for the same k). Depending on the authors, a "multivector" may be either a k-vector or any element of the exterior algebra (any linear combination of k-blades with potentially differing values of k).
In differential geometry, a k-vector is a vector in the exterior algebra of the tangent vector space; that is, it is an antisymmetric tensor obtained by taking linear combinations of the exterior product of k tangent vectors, for some integer k ≥ 0. A differential k-form is a k-vector in the exterior algebra of the dual of the tangent space, which is also the dual of the exterior algebra of the tangent space.
For k = 0, 1, 2 and 3, k-vectors are often called respectively scalars, vectors, bivectors and trivectors; they are respectively dual to 0-forms, 1-forms, 2-forms and 3-forms.
Exterior algebra
The exterior product (also called the wedge product) used to construct multivectors is multilinear (linear in each input), associative and alternating. This means for vectors u, v and w in a vector space V and for scalars α, β, the exterior product has the properties:
Linear in an input:
Associative:
Alternating:
The exterior product of k vectors or a sum of such products (for a single k) is called a grade k multivector, or a k-vector. The maximum grade of a multivector is the dimension of the vector space V.
Linearity in either input together with the alternating property implies linearity in the other input. The multilinearity of the exterior product allows a multivector to be expressed as a linear combination of exterior products of basis vectors of V.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.
The orientation of a real vector space or simply orientation of a vector space is the arbitrary choice of which ordered bases are "positively" oriented and which are "negatively" oriented. In the three-dimensional Euclidean space, right-handed bases are typically declared to be positively oriented, but the choice is arbitrary, as they may also be assigned a negative orientation. A vector space with an orientation selected is called an oriented vector space, while one not having an orientation selected, is called .
In mathematics, specifically multilinear algebra, a dyadic or dyadic tensor is a second order tensor, written in a notation that fits in with vector algebra. There are numerous ways to multiply two Euclidean vectors. The dot product takes in two vectors and returns a scalar, while the cross product returns a pseudovector. Both of these have various significant geometric interpretations and are widely used in mathematics, physics, and engineering. The dyadic product takes in two vectors and returns a second order tensor called a dyadic in this context.
In linear algebra, a pseudoscalar is a quantity that behaves like a scalar, except that it changes sign under a parity inversion while a true scalar does not. Any scalar product between a pseudovector and an ordinary vector is a pseudoscalar. The prototypical example of a pseudoscalar is the scalar triple product, which can be written as the scalar product between one of the vectors in the triple product and the cross product between the two other vectors, where the latter is a pseudovector.
In 4d N = 1 superconformal field theories (SCFTs) the R-symmetry current, the stress-energy tensor, and the supersymmetry currents are grouped into a single object, the Ferrara-Zumino multiplet. In this work we study the most general form of three-point fu ...
We propose statistically self-similar and rotation-invariant models for vector fields, study some of the more significant properties of these models, and suggest algorithms and methods for reconstructing vector fields from numerical observations, using the ...
Stochastic phenomena are often described by Langevin equations, which serve as a mesoscopic model for microscopic dynamics. It has been known since the work of Parisi and Sourlas that reversible (or equilibrium) dynamics present supersymmetries (SUSYs). Th ...