Summary
X-ray absorption spectroscopy (XAS) is a widely used technique for determining the local geometric and/or electronic structure of matter. The experiment is usually performed at synchrotron radiation facilities, which provide intense and tunable X-ray beams. Samples can be in the gas phase, solutions, or solids. XAS data is obtained by tuning the photon energy, using a crystalline monochromator, to a range where core electrons can be excited (0.1-100 keV). The edges are, in part, named by which core electron is excited: the principal quantum numbers n = 1, 2, and 3, correspond to the K-, L-, and M-edges, respectively. For instance, excitation of a 1s electron occurs at the K-edge, while excitation of a 2s or 2p electron occurs at an L-edge (Figure 1). There are three main regions found on a spectrum generated by XAS data which are then thought of as separate spectroscopic techniques (Figure 2): The absorption threshold determined by the transition to the lowest unoccupied states: The X-ray absorption near-edge structure (XANES), introduced in 1980 and later in 1983 and also called NEXAFS (near-edge X-ray absorption fine structure), which are dominated by core transitions to quasi bound states (multiple scattering resonances) for photoelectrons with kinetic energy in the range from 10 to 150 eV above the chemical potential, called "shape resonances" in molecular spectra since they are due to final states of short life-time degenerate with the continuum with the Fano line-shape. In this range multi-electron excitations and many-body final states in strongly correlated systems are relevant; In the high kinetic energy range of the photoelectron, the scattering cross-section with neighbor atoms is weak, and the absorption spectra are dominated by EXAFS (extended X-ray absorption fine structure), where the scattering of the ejected photoelectron of neighboring atoms can be approximated by single scattering events. In 1985, it was shown that multiple scattering theory can be used to interpret both XANES and EXAFS; therefore, the experimental analysis focusing on both regions is now called XAFS.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.