Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
A flexible alternating current transmission system (FACTS) is a system composed of static equipment used for the alternating current (AC) transmission of electrical energy. It is meant to enhance controllability and increase power transfer capability of the network. It is generally a power electronics-based system. FACTS is defined by the Institute of Electrical and Electronics Engineers (IEEE) as "a power electronic based system and other static equipment that provide control of one or more AC transmission system parameters to enhance controllability and increase power transfer capability". According to Siemens, "FACTS Increase the reliability of AC grids and reduce power delivery costs. They improve transmission quality and efficiency of power transmission by supplying inductive or reactive power to grid. In shunt compensation, power system is connected in shunt (parallel) with the FACTS. It works as a controllable current source. Shunt compensation is of two types: Shunt capacitive compensation This method is used to improve the power factor. Whenever an inductive load is connected to the transmission line, power factor lags because of lagging load current. To compensate, a shunt capacitor is connected which draws the current leading the source voltage. The net result is improvement in power factor. Shunt inductive compensation This method is used either when charging the transmission line, or, when there is very low load at the receiving end. Due to very low, or no load – very low current flows through the transmission line. Shunt capacitance in the transmission line causes voltage amplification (Ferranti effect). The receiving end voltage may become double the sending end voltage (generally in case of very long transmission lines). To compensate, shunt inductors are connected across the transmission line. The power transfer capability is thereby increased depending upon the power equation where is the power angle. In the case of a no-loss line, voltage magnitude at the receiving end is the same as voltage magnitude at the sending end: Vs = Vr = V.
Drazen Dujic, Andrea Cervone, Tianyu Wei
Drazen Dujic, Andrea Cervone, Tianyu Wei
Drazen Dujic, Andrea Cervone, Tianyu Wei