Semiconductor device fabrication is the process used to manufacture semiconductor devices, typically integrated circuits (ICs) such as computer processors, microcontrollers, and memory chips (such as NAND flash and DRAM) that are present in everyday electrical and electronic devices. It is a multiple-step photolithographic and physio-chemical process (with steps such as thermal oxidation, thin-film deposition, ion-implantation, etching) during which electronic circuits are gradually created on a wafer, typically made of pure single-crystal semiconducting material. Silicon is almost always used, but various compound semiconductors are used for specialized applications.
The fabrication process is performed in highly specialized semiconductor fabrication plants, also called foundries or "fabs", with the central part being the "clean room". In more advanced semiconductor devices, such as modern 14/10/7 nm nodes, fabrication can take up to 15 weeks, with 11–13 weeks being the industry average. Production in advanced fabrication facilities is completely automated and carried out in a hermetically sealed nitrogen environment to improve yield (the percent of microchips that function correctly in a wafer), with automated material handling systems taking care of the transport of wafers from machine to machine. Wafers are transported inside FOUPs, special sealed plastic boxes. All machinery and FOUPs contain an internal nitrogen atmosphere. The insides of the processing equipment and FOUPs is kept cleaner than the surrounding air in the cleanroom. This internal atmosphere is known as a mini-environment. Fabrication plants need large amounts of liquid nitrogen to maintain the atmosphere inside production machinery and FOUPs, which are constantly purged with nitrogen.
A specific semiconductor process has specific rules on the minimum size (width or CD) and spacing for features on each layer of the chip.
Normally a new semiconductor process has smaller minimum sizes and tighter spacing.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Comparaison entre les systèmes à composants discrets et les systèmes intégrés. Introduction aux systèmes électroniques numériques et analogiques et à leur interfaçage. Analyse sous forme d'un projet
Students will learn about understanding the fundamentals and applications of emerging nanoscale devices, materials and concepts.Remark: at least 5 students should be enrolled for the course to be g
Intro into the relation between physical and structural properties; introduction into different X-Ray techniques; examples of successful technological transfer using X-Ray techniques;
Structural prope
In integrated circuit manufacturing, photolithography or optical lithography is a general term used for techniques that use light to produce minutely patterned thin films of suitable materials over a substrate, such as a silicon wafer, to protect selected areas of it during subsequent etching, deposition, or implantation operations. Typically, ultraviolet light is used to transfer a geometric design from an optical mask to a light-sensitive chemical (photoresist) coated on the substrate.
A transistor is a semiconductor device used to amplify or switch electrical signals and power. It is one of the basic building blocks of modern electronics. It is composed of semiconductor material, usually with at least three terminals for connection to an electronic circuit. A voltage or current applied to one pair of the transistor's terminals controls the current through another pair of terminals. Because the controlled (output) power can be higher than the controlling (input) power, a transistor can amplify a signal.
The metal-oxide-semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET) is a type of field-effect transistor (FET), most commonly fabricated by the controlled oxidation of silicon. It has an insulated gate, the voltage of which determines the conductivity of the device. This ability to change conductivity with the amount of applied voltage can be used for amplifying or switching electronic signals. A metal-insulator-semiconductor field-effect transistor (MISFET) is a term almost synonymous with MOSFET.
On-surface synthesis has become a prominent method for growing low-dimensional carbon-based nanomaterials on metal surfaces. However, the necessity of decoupling organic nanostructures from metal substrates to exploit their properties requires either trans ...
TimberSLAM (TSLAM) is an object-centered, tag-based visual self-localization and mapping (SLAM) system for monocular RGB cameras. It was specifically developed to support a robust and augmented reality pipeline for close-range, noisy, and cluttered fabrica ...
Surface functionalization of 1D materials such as silicon nanowires is a critical preparation technology for biochemical sensing. However, existing nonselective functionalization techniques result in nonlocal binding and contamination, with potential devic ...