Concept

Steradian

Summary
The steradian (symbol: sr) or square radian is the unit of solid angle in the International System of Units (SI). It is used in three dimensional geometry, and is analogous to the radian, which quantifies planar angles. Whereas an angle in radians, projected onto a circle, gives a length of a circular arc on the circumference, a solid angle in steradians, projected onto a sphere, gives the area of a spherical cap on the surface. The name is derived from the Greek στερεός 'solid' + radian. The steradian is a dimensionless unit, the quotient of the area subtended and the square of its distance from the centre. Both the numerator and denominator of this ratio have dimension length squared (i.e. L^2/L^2 = 1, dimensionless). It is useful, however, to distinguish between dimensionless quantities of a different kind, such as the radian (a ratio of quantities of dimension length), so the symbol "sr" is used to indicate a solid angle. For example, radiant intensity can be measured in watts per steradian (W⋅sr−1). The steradian was formerly an SI supplementary unit, but this category was abolished in 1995 and the steradian is now considered an SI derived unit. A steradian can be defined as the solid angle subtended at the centre of a unit sphere by a unit area on its surface. For a general sphere of radius r, any portion of its surface with area A = r2 subtends one steradian at its centre. The solid angle is related to the area it cuts out of a sphere: where Ω is the solid angle A is the surface area of the spherical cap, , r is the radius of the sphere, h is the height of the cap, and sr is the unit, steradian. Because the surface area A of a sphere is 4πr2, the definition implies that a sphere subtends 4π steradians (≈ 12.56637 sr) at its centre, or that a steradian subtends 1/4π (≈ 0.07958) of a sphere. By the same argument, the maximum solid angle that can be subtended at any point is 4π sr. If A = r2, it corresponds to the area of a spherical cap (A = 2πrh, where h is the "height" of the cap) and the relationship holds.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.