Summary
An isotopic signature (also isotopic fingerprint) is a ratio of non-radiogenic 'stable isotopes', stable radiogenic isotopes, or unstable radioactive isotopes of particular elements in an investigated material. The ratios of isotopes in a sample material are measured by isotope-ratio mass spectrometry against an isotopic reference material. This process is called isotope analysis. The atomic mass of different isotopes affect their chemical kinetic behavior, leading to natural isotope separation processes. For example, different sources and sinks of methane have different affinity for the 12C and 13C isotopes, which allows distinguishing between different sources by the 13C/12C ratio in methane in the air. In geochemistry, paleoclimatology and paleoceanography this ratio is called δ13C. The ratio is calculated with respect to Pee Dee Belemnite (PDB) standard: ‰ Similarly, carbon in inorganic carbonates shows little isotopic fractionation, while carbon in materials originated by photosynthesis is depleted of the heavier isotopes. In addition, there are two types of plants with different biochemical pathways; the C3 carbon fixation, where the isotope separation effect is more pronounced, C4 carbon fixation, where the heavier 13C is less depleted, and Crassulacean Acid Metabolism (CAM) plants, where the effect is similar but less pronounced than with C4 plants. Isotopic fractionation in plants is caused by physical (slower diffusion of 13C in plant tissues due to increased atomic weight) and biochemical (preference of 12C by two enzymes: RuBisCO and phosphoenolpyruvate carboxylase) factors. The different isotope ratios for the two kinds of plants propagate through the food chain, thus it is possible to determine if the principal diet of a human or an animal consists primarily of C3 plants (rice, wheat, soybeans, potatoes) or C4 plants (corn, or corn-fed beef) by isotope analysis of their flesh and bone collagen (however, to obtain more accurate determinations, carbon isotopic fractionation must be also taken into account, since several studies have reported significant 13C discrimination during biodegradation of simple and complex substrates).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.