Summary
Spacecraft propulsion is any method used to accelerate spacecraft and artificial satellites. In-space propulsion exclusively deals with propulsion systems used in the vacuum of space and should not be confused with space launch or atmospheric entry. Several methods of pragmatic spacecraft propulsion have been developed, each having its own drawbacks and advantages. Most satellites have simple reliable chemical thrusters (often monopropellant rockets) or resistojet rockets for orbital station-keeping and some use momentum wheels for attitude control. Russian and antecedant Soviet bloc satellites have used electric propulsion for decades, and newer Western geo-orbiting spacecraft are starting to use them for north–south station-keeping and orbit raising. Interplanetary vehicles mostly use chemical rockets as well, although a few have used ion thrusters and Hall-effect thrusters (two different types of electric propulsion) to great success. Hypothetical in-space propulsion technologies describe the propulsion technologies that could meet future space science and exploration needs. These propulsion technologies are intended to provide effective exploration of the Solar System and will permit mission designers to plan missions to "fly anytime, anywhere, and complete a host of science objectives at the destinations" and with greater reliability and safety. With a wide range of possible missions and candidate propulsion technologies, the question of which technologies are "best" for future missions is a difficult one; expert opinion now holds that a portfolio of propulsion technologies should be developed to provide optimum solutions for a diverse set of missions and destinations. In-space propulsion begins where the upper stage of the launch vehicle leaves off; performing the functions of primary propulsion, reaction control, station keeping, precision pointing, and orbital maneuvering. The main engines used in space provide the primary propulsive force for orbit transfer, planetary trajectories and extra planetary landing and ascent.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (7)
EE-584: Spacecraft design and system engineering
The main objective of the course is to learn to apply the fundamentals of space system engineering & design. The course introduces the various phases, systems, & subsystems involved in the design of s
EE-585: Space mission design and operations
This course is a "concepts" course. It introduces a variety of concepts in use in the design of a space mission, manned or unmanned, and in space operations. it is partly based on the practical space
ENG-510: Space propulsion
The main objective of the course is to provide an overview of space propulsion systems. The course will also describe the basic design principles of propulsion systems.
Show more
Related lectures (57)
Bi-liquid rocket engine: SLM manufacturing
Explores the EPFL Rocket Team's bi-liquid rocket engine design for space travel.
Rocket Fuel Consumption and Altitude Determination
Covers the determination of a rocket's speed and altitude when the fuel is exhausted.
Swiss Solar Boat: Propulsion Characterization
Covers the characterization of the propulsion system of the Swiss Solar Boat.
Show more
Related publications (81)