Summary
In physics, sputtering is a phenomenon in which microscopic particles of a solid material are ejected from its surface, after the material is itself bombarded by energetic particles of a plasma or gas. It occurs naturally in outer space, and can be an unwelcome source of wear in precision components. However, the fact that it can be made to act on extremely fine layers of material is utilised in science and industry—there, it is used to perform precise etching, carry out analytical techniques, and deposit thin film layers in the manufacture of optical coatings, semiconductor devices and nanotechnology products. It is a physical vapor deposition technique. When energetic ions collide with atoms of a target material, an exchange of momentum takes place between them. These ions, known as "incident ions", set off collision cascades in the target. Such cascades can take many paths; some recoil back toward the surface of the target. If a collision cascade reaches the surface of the target, and its remaining energy is greater than the target's surface binding energy, an atom will be ejected. This process is known as "sputtering". If the target is thin (on an atomic scale), the collision cascade can reach through to its back side; the atoms ejected in this fashion are said to escape the surface binding energy "in transmission". The average number of atoms ejected from the target per incident ion is called the "sputter yield". The sputter yield depends on several things: the angle at which ions collide with the surface of the material, how much energy they strike it with, their masses, the masses of the target atoms, and the target's surface binding energy. If the target possesses a crystal structure, the orientation of its axes with respect to the surface is an important factor. The ions that cause sputtering come from a variety of sources—they can come from plasma, specially constructed ion sources, particle accelerators, outer space (e.g. solar wind), or radioactive materials (e.g. alpha radiation).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (5)
MICRO-566: Large-area electronics: devices and materials
Introduction to the physical concepts involved in the description of optical and electronic transport properties of thin-film semiconductor materials found in many large-area applications (solar cells
MICRO-621: MOOC: Micro and Nanofabrication (MEMS)
Micro- and nanofabrication can be taught to students and professionals by textbooks and ex-cathedra lectures, but the real learning comes from seeing the manufacturing steps as they happen. This MOOC
MSE-352: Introduction to microscopy + Laboratory work
Ce cours d'introduction à la microscopie a pour but de donner un apperçu des différentes techniques d'analyse de la microstructure et de la composition des matériaux, en particulier celles liées aux m
Show more