Placer mining (ˈplæsər) is the mining of stream bed (alluvial) deposits for minerals. This may be done by open-pit (also called open-cast mining) or by various surface excavating equipment or tunneling equipment.
Placer mining is frequently used for precious metal deposits (particularly gold) and gemstones, both of which are often found in alluvial deposits—deposits of sand and gravel in modern or ancient stream beds, or occasionally glacial deposits. The metal or gemstones, having been moved by stream flow from an original source such as a vein, are typically only a minuscule portion of the total deposit. Since gems and heavy metals like gold are considerably denser than sand, they tend to accumulate at the base of placer deposits.
Placer deposits can be as young as a few years old, such as the Canadian Queen Charlotte beach gold placer deposits, or billions of years old like the Elliot Lake uranium paleoplacer within the Huronian Supergroup in Canada.
The containing material in an alluvial placer mine may be too loose to safely mine by tunnelling, though it is possible where the ground is permanently frozen. Where water under pressure is available, it may be used to mine, move, and separate the precious material from the deposit, a method known as hydraulic mining, hydraulic sluicing or hydraulicking.
The word placer derives from the Spanish placer, meaning shoal or alluvial/sand deposit, from plassa (place) from Medieval Latin placea (place) the origin word for "place" and "plaza" in English. The word in Spanish is thus derived from placea and refers directly to an alluvial or glacial deposit of sand or gravel.
An alternative etymology derives the English word from American Spanish placer (placer, sandbank), from earlier placel, apparently from obsolete Portuguese placel (placer, sandbank).
Placers supplied most of the gold for a large part of the ancient world. Hydraulic mining methods such as hushing were used widely by the Romans across their empire, but especially in the gold fields of northern Spain after its conquest by Augustus in 25 BC.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Hushing is an ancient and historic mining method using a flood or torrent of water to reveal mineral veins. The method was applied in several ways, both in prospecting for ores, and for their exploitation. Mineral veins are often hidden below soil and sub-soil, which must be stripped away to discover the ore veins. A flood of water is very effective in moving soil as well as working the ore deposits when combined with other methods such as fire-setting.
In geology, a placer deposit or placer is an accumulation of valuable minerals formed by gravity separation from a specific source rock during sedimentary processes. The name is from the Spanish word placer, meaning "alluvial sand". Placer mining is an important source of gold, and was the main technique used in the early years of many gold rushes, including the California Gold Rush. Types of placer deposits include alluvium, eluvium, beach placers, aeolian placers and paleo-placers.
Mercury is a chemical element with the symbol Hg and atomic number 80. It is also known as quicksilver and was formerly named hydrargyrum (haɪˈdrɑrdʒərəm ) from the Greek words hydro (water) and argyros (silver). A heavy, silvery d-block element, mercury is the only metallic element that is known to be liquid at standard temperature and pressure; the only other element that is liquid under these conditions is the halogen bromine, though metals such as caesium, gallium, and rubidium melt just above room temperature.
Uranium (U) contamination of ground and surface waters poses an acute hazard on the ecosystem and human health. Since the discovery of microbial U(VI) reduction, U bioremediation has been explored as a promising and cost-effective method compared to tradit ...
The idea of introducing dedicated, fast paths between certain FPGA elements in order to reduce delay is neither new nor particularly hard to come up with. What is less obvious, however, is how to put such paths to actual use. In this work, we propose an ef ...
IEEE2020
, , ,
This review explores the potential of separating and recycling rare earth elements (REEs) from different energy conversion systems, such as wind turbines, electric vehicles batteries, or lighting devices. The REEs include 17 elements (with global productio ...