A camera raw image file contains unprocessed or minimally processed data from the of either a digital camera, a motion picture film scanner, or other . Raw files are so named because they are not yet processed, and contain large amounts of potentially redundant data. Normally, the image is processed by a raw converter, in a wide-gamut internal color space where precise adjustments can be made before to a viewable file format such as JPEG or PNG for storage, printing, or further manipulation. There are dozens of raw formats in use by different manufacturers of digital image capture equipment.
Raw image files are sometimes incorrectly described as "digital negatives". Rather, the raw datasets are more like exposed but film which can be converted (electronically developed) in a non-destructive manner multiple times in observable, reversible steps to reach a visually desired image. (With exposed film, development is a single event that physically transforms the unexposed film irreversibly.)
Like undeveloped photographic film, a raw digital image may have a wider dynamic range or color gamut than the developed film or print. Unlike physical film after development, the Raw file preserves the information captured at the time of exposure. The purpose of raw image formats is to save, with minimum loss of information, data obtained from the sensor.
Raw image formats are intended to capture the radiometric characteristics of the scene, that is, physical information about the light intensity and color of the scene, at the best of the camera sensor's performance. Most raw image file formats store information sensed according to the geometry of the sensor's individual photo-receptive elements (sometimes called pixels) rather than points in the expected final image: sensors with hexagonal element displacement, for example, record information for each of their hexagonally-displaced cells, which a decoding software will eventually transform into the rectangular geometry during "digital developing".
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours d'introduction à la microscopie a pour but de donner un apperçu des différentes techniques d'analyse de la microstructure et de la composition des matériaux, en particulier celles liées aux m
First 2 courses are Tuesday 16-19h!This course will arm students with knowledge of different imaging techniques for practical measurements in many different fields of civil engineering. Modalities wil
Students analyse the fundamental characteristics of optical detectors. Thermal and photoemissive devices as well as photodiodes and infrared sensors are studied. CCD and CMOS cameras are analysed in d
Sigma Corporation is a Japanese company, manufacturing cameras, lenses, flashes and other photographic accessories. All Sigma products are produced in the company's own Aizu factory in Bandai, Fukushima, Japan. Although Sigma produces several camera models, the company is best known for producing high-quality lenses and other accessories that are compatible with the cameras produced by other companies. The company was founded in 1961 by Michihiro Yamaki, who was Sigma's CEO until his death at age 78 in 2012.
Generation loss is the loss of quality between subsequent copies or transcodes of data. Anything that reduces the quality of the representation when copying, and would cause further reduction in quality on making a copy of the copy, can be considered a form of generation loss. File size increases are a common result of generation loss, as the introduction of artifacts may actually increase the entropy of the data through each generation.
In photography and videography, multi-exposure HDR capture is a technique that creates extended or high dynamic range (HDR) images by taking and combining multiple exposures of the same subject matter at different exposure levels. Combining multiple images in this way results in an image with a greater dynamic range than what would be possible by taking one single image. The technique can also be used to capture video by taking and combining multiple exposures for each frame of the video.
Scintillating fibre detectors combine sub-mm resolution particle tracking, precise measurements of the particle stopping power and sub-ns time resolution. Typically, fibres are read out with silicon photomultipliers (SiPM). Hence, if fibres with a few hund ...
New York2024
Vision systems built around conventional image sensors have to read, encode and transmit large quantities of pixel information, a majority of which is redundant. As a result, new computational imaging sensor architectures were developed to preprocess the r ...
We introduce a new family of single-photon avalanche diodes (SPADs) with enhanced depletion regions in a 55-nm Bipolar-CMOS-DMOS (BCD) technology. We demonstrate how to systematically engineer doping profiles in the main junction and in deep p-well layers ...