Salamanders are a group of amphibians typically characterized by their lizard-like appearance, with slender bodies, blunt snouts, short limbs projecting at right angles to the body, and the presence of a tail in both larvae and adults. All ten extant salamander families are grouped together under the order Urodela from the group Caudata. Salamander diversity is highest in eastern North America, especially in the Appalachian Mountains; most species are found in the Holarctic realm, with some species present in the Neotropical realm.
Salamanders rarely have more than four toes on their front legs and five on their rear legs, but some species have fewer digits and others lack hind limbs. Their permeable skin usually makes them reliant on habitats in or near water or other cool, damp places. Some salamander species are fully aquatic throughout their lives, some take to the water intermittently, and others are entirely terrestrial as adults.
This group of amphibians is capable of regenerating lost limbs as well as other damaged parts of their bodies. Researchers hope to reverse engineer the regenerative processes for potential human medical applications, such as brain and spinal cord injury treatment or preventing harmful scarring during heart surgery recovery.
Members of the family Salamandridae are mostly known as newts and lack the costal grooves along the sides of their bodies typical of other groups. The skin of some species contains the powerful poison tetrodotoxin; these salamanders tend to be slow-moving and have bright warning coloration to advertise their toxicity. Salamanders typically lay eggs in water and have aquatic larvae, but great variation occurs in their lifecycles. Some species in harsh environments reproduce while still in the larval state.
The word salamander comes from Old French salamandre from Latin salamandra from Greek σαλαμάνδρα, which is used for the fire salamander.
The skin lacks scales and is moist and smooth to the touch, except in newts of the Salamandridae, which may have velvety or warty skin, wet to the touch.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Students will acquire an integrative view on biological and artificial algorithms for controlling autonomous behaviors. Students will synthesize and apply this knowledge in oral presentations and comp
A frog is any member of a diverse and largely carnivorous group of short-bodied, tailless amphibians composing the order Anura (ἀνούρα, literally without tail in Ancient Greek). The oldest fossil "proto-frog" Triadobatrachus is known from the Early Triassic of Madagascar, but molecular clock dating suggests their split from other amphibians may extend further back to the Permian, 265 million years ago. Frogs are widely distributed, ranging from the tropics to subarctic regions, but the greatest concentration of species diversity is in tropical rainforest.
Tetrapods ('tɛtrəˌpɒdz; ) are four-limbed vertebrate animals constituting the superclass Tetrapoda (tɛ'træpədə). It includes all extant and extinct amphibians, and the amniotes which in turn evolved into the sauropsids (reptiles, including dinosaurs and therefore birds) and synapsids (extinct pelycosaurs, therapsids and all extant mammals). Some tetrapods such as snakes, legless lizards and caecilians had evolved to become limbless via mutations of the Hox gene, although some do still have a pair of vestigial spurs that are remnants of the hindlimbs.
Vertebrates (ˈvɜrtəbrɪts,_-ˌbreɪts) are animals with spinal cords and bony or cartilaginous backbones, including all mammals, birds, reptiles, amphibians and fish. The vertebrates consist of all the taxa within the subphylum Vertebrata (ˌvɜrtəˈbreɪtə) (chordates with backbones) and represent the overwhelming majority of the phylum Chordata, with currently about 69,963 species described.
Explores programmed cell death mechanisms, including apoptosis and autophagy, with a focus on their implications in various organisms and regeneration processes.
Humans and other tetrapods are considered to require apical-ectodermal-ridge (AER) cells for limb development, and AER-like cells are suggested to be re-formed to initiate limb regeneration. Paradoxically, the presence of AER in the axolotl, a primary mode ...
Why only certain species can regenerate their appendages (e.g. tails and limbs) remains one of the biggest mysteries of nature. Unlike anuran tadpoles and salamanders, humans and other mammals cannot regenerate their limbs, but can only regrow lost digit t ...
Joint range of motion (RoM) analyses are fundamental to our understanding of how an animal moves throughout its ecosystem. Recent technological advances allow for more detailed quantification of this RoM (e.g. including interaction of degrees of freedom) b ...