Summary
The arrow of time, also called time's arrow, is the concept positing the "one-way direction" or "asymmetry" of time. It was developed in 1927 by the British astrophysicist Arthur Eddington, and is an unsolved general physics question. This direction, according to Eddington, could be determined by studying the organization of atoms, molecules, and bodies, and might be drawn upon a four-dimensional relativistic map of the world ("a solid block of paper"). The Arrow of Time paradox was originally recognized in the 1800's for gases (and other substances) as a discrepancy between microscopic and macroscopic description of thermodynamics / statistical Physics: at the microscopic level physical processes are believed to be either entirely or mostly time-symmetric: if the direction of time were to reverse, the theoretical statements that describe them would remain true . Yet at the macroscopic level it often appears that this is not the case: there is an obvious direction (or flow) of time. The symmetry of time (T-symmetry) can be understood simply as the following: if time were perfectly symmetrical, a video of real events would seem realistic whether played forwards or backwards. Gravity, for example, is a time-reversible force. A ball that is tossed up, slows to a stop, and falls is a case where recordings would look equally realistic forwards and backwards. The system is T-symmetrical. However, the process of the ball bouncing and eventually coming to a stop is not time-reversible. While going forward, kinetic energy is dissipated and entropy is increased. Entropy may be one of the few processes that is not time-reversible. According to the statistical notion of increasing entropy, the "arrow" of time is identified with a decrease of free energy. In his book The Big Picture, physicist Sean M. Carroll compares the asymmetry of time to the asymmetry of space: While physical laws are in general isotropic, near Earth there is an obvious distinction between "up" and "down", due to proximity to this huge body, which breaks the symmetry of space.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.