Concept

Identity (mathematics)

Summary
In mathematics, an identity is an equality relating one mathematical expression A to another mathematical expression B, such that A and B (which might contain some variables) produce the same value for all values of the variables within a certain range of validity. In other words, A = B is an identity if A and B define the same functions, and an identity is an equality between functions that are differently defined. For example, and are identities. Identities are sometimes indicated by the triple bar symbol ≡ instead of =, the equals sign. Formally, an identity is a universally quantified equality. Factorization#Recognizable patterns Certain identities, such as and , form the basis of algebra, while other identities, such as and , can be useful in simplifying algebraic expressions and expanding them. List of trigonometric identities Geometrically, trigonometric identities are identities involving certain functions of one or more angles. They are distinct from triangle identities, which are identities involving both angles and side lengths of a triangle. Only the former are covered in this article. These identities are useful whenever expressions involving trigonometric functions need to be simplified. Another important application is the integration of non-trigonometric functions: a common technique which involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity. One of the most prominent examples of trigonometric identities involves the equation which is true for all real values of . On the other hand, the equation is only true for certain values of , not all. For example, this equation is true when but false when . Another group of trigonometric identities concerns the so-called addition/subtraction formulas (e.g. the double-angle identity , the addition formula for ), which can be used to break down expressions of larger angles into those with smaller constituents.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.