Concept

Microstate (statistical mechanics)

Summary
In statistical mechanics, a microstate is a specific configuration of a system that describes the precise positions and momenta of all the individual particles or components that make up the system. Each microstate has a certain probability of occurring during the course of the system's thermal fluctuations. In contrast, the macrostate of a system refers to its macroscopic properties, such as its temperature, pressure, volume and density. Treatments on statistical mechanics define a macrostate as follows: a particular set of values of energy, the number of particles, and the volume of an isolated thermodynamic system is said to specify a particular macrostate of it. In this description, microstates appear as different possible ways the system can achieve a particular macrostate. A macrostate is characterized by a probability distribution of possible states across a certain statistical ensemble of all microstates. This distribution describes the probability of finding the system in a certain microstate. In the thermodynamic limit, the microstates visited by a macroscopic system during its fluctuations all have the same macroscopic properties. In a quantum system, the microstate is simply the value of the wave function. Statistical mechanics links the empirical thermodynamic properties of a system to the statistical distribution of an ensemble of microstates. All macroscopic thermodynamic properties of a system may be calculated from the partition function that sums of all its microstates. At any moment a system is distributed across an ensemble of microstates, each labeled by , and having a probability of occupation , and an energy . If the microstates are quantum-mechanical in nature, then these microstates form a discrete set as defined by quantum statistical mechanics, and is an energy level of the system. The internal energy of the macrostate is the mean over all microstates of the system's energy This is a microscopic statement of the notion of energy associated with the first law of thermodynamics.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.